Criterion for Human Arm in Reaching Tasks and Human-like Motion Planning of Robotic Arm

2015 ◽  
Vol 51 (23) ◽  
pp. 21
Author(s):  
Jing ZHAO
Mechatronics ◽  
2021 ◽  
Vol 78 ◽  
pp. 102630
Author(s):  
Aolei Yang ◽  
Yanling Chen ◽  
Wasif Naeem ◽  
Minrui Fei ◽  
Ling Chen

2021 ◽  
Author(s):  
Asif Arefeen ◽  
Yujiang Xiang

Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.


2021 ◽  
Author(s):  
Puneet Singh ◽  
Oishee Ghosal ◽  
Aditya Murthy ◽  
Ashitava Ghodal

A human arm, up to the wrist, is often modelled as a redundant 7 degree-of-freedom serial robot. Despite its inherent nonlinearity, we can perform point-to-point reaching tasks reasonably fast and with reasonable accuracy in the presence of external disturbances and noise. In this work, we take a closer look at the task space error during point-to-point reaching tasks and learning during an external force-field perturbation. From experiments and quantitative data, we confirm a directional dependence of the peak task space error with certain directions showing larger errors than others at the start of a force-field perturbation, and the larger errors are reduced with repeated trials implying learning. The analysis of the experimental data further shows that a) the distribution of the peak error is made more uniform across directions with trials and the error magnitude and distribution approaches the value when no perturbation is applied, b) the redundancy present in the human arm is used more in the direction of the larger error, and c) homogenization of the error distribution is not seen when the reaching task is performed with the non-dominant hand. The results support the hypothesis that not only magnitude of task space error, but the directional dependence is reduced during motor learning and the workspace is homogenized possibly to increase the control efficiency and accuracy in point-to-point reaching tasks. The results also imply that redundancy in the arm is used to homogenize the workspace, and additionally since the bio-mechanically similar dominant and non-dominant arms show different behaviours, the homogenizing is actively done in the central nervous system.


2006 ◽  
Vol 3 (3) ◽  
pp. 199-208 ◽  
Author(s):  
S. K. Mustafa ◽  
G. Yang ◽  
S. H. Yeo ◽  
W. Lin

This paper presents the design of a bio-inspired anthropocentric 7-DOF wearable robotic arm for the purpose of stroke rehabilitation. The proposed arm rehabilitator synergistically utilizes the human arm structure with non-invasive kinematically under-deterministic cable-driven mechanisms to form a completely deterministic structure. It offers the advantages of being lightweight and having high dexterity. Adopting an anthropocentric design concept also allows it to conform to the human anatomical structure. The focus of this paper is on the analysis and design of the 3-DOF-shoulder module, called the shoulder rehabilitator. The design methodology is divided into three main steps: (1) performance evaluation of the cable-driven shoulder rehabilitator, (2) performance requirements of the shoulder joint based on its physiological characteristics and (3) design optimization of the shoulder rehabilitator based on shoulder joint physiological limitations. The aim is to determine a suitable configuration for the development of a shoulder rehabilitator prototype.


2019 ◽  
Vol 16 (04) ◽  
pp. 1950012 ◽  
Author(s):  
Mircea Hulea ◽  
Adrian Burlacu ◽  
Constantin-Florin Caruntu

This paper details an intelligent motion planning and control approach for a one-degree of freedom joint of a robotic arm that can be used to implement anthropomorphic robotic hands. This intelligent control method is based on bio-inspired electronic neural networks and contractile artificial muscles implemented with shape memory alloy (SMA) actuators. The spiking neural network (SNN) includes several excitatory neurons that naturally determine the contraction force of the actuators, and unevenly distributed inhibitory neurons that regulate the excitatory activity. To validate the proposed concept, the experiments highlight the motion planning and control of a single-joint robotic arm. The results show that the electronic neural network is able to intelligently activate motion and hold with high precision the mobile link to the target positions even if the arm is slightly loaded. These results are encouraging for the development of improved biologically plausible neural structures that are able to control simultaneously multiple muscles.


2017 ◽  
Vol 37 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Arash Ajoudani ◽  
Cheng Fang ◽  
Nikos Tsagarakis ◽  
Antonio Bicchi

In this paper, a reduced-complexity model of the human arm endpoint stiffness is introduced and experimentally evaluated for the teleimpedance control of a compliant robotic arm. The modeling of the human arm endpoint stiffness behavior is inspired by human motor control principles on the predominant use of the arm configuration in directional adjustments of the endpoint stiffness profile, and the synergistic effect of muscular activations, which contributes to a coordinated modification of the task stiffness in all Cartesian directions. Calibration and identification of the model parameters are carried out experimentally, using perturbation-based arm endpoint stiffness measurements in different arm configurations and cocontraction levels of the chosen muscles. Consequently, the real-time model is used for the remote control of a compliant robotic arm while executing a drilling task, a representative example of tool use in environments with constraints and dynamic uncertainties. The results of this study illustrate that the proposed model enables the master to execute the remote task by modulation of the directions of the major axes of the endpoint stiffness ellipsoid and its volume using natural arm configurations and the cocontraction of the involved muscles, respectively.


Sign in / Sign up

Export Citation Format

Share Document