Research on the Longitudinal Vibration Band Gaps of Isolator Applied to Ship Hydraulic Pipe-Support Based on the Theory of Phononic Crystals

2016 ◽  
Vol 52 (15) ◽  
pp. 91
Author(s):  
Zhendong WEI
2015 ◽  
Vol 63 (2) ◽  
pp. 202-210 ◽  
Author(s):  
Haisheng Shu ◽  
Lei Zhao ◽  
Xiaona Shi ◽  
Wei Liu ◽  
Zhenyu Li ◽  
...  

2015 ◽  
Vol 29 (20) ◽  
pp. 1550105
Author(s):  
Haojiang Zhao ◽  
Rongqiang Liu ◽  
Chuang Shi ◽  
Hongwei Guo ◽  
Zongquan Deng

Longitudinal vibration of thin phononic crystal plates with a hybrid square-like array of square inserts is investigated. The plane wave expansion method is used to calculate the vibration band structure of the plate. Numerical results show that rotated square inserts can open several vibration gaps, and the band structures are twisted because of the rotation of inserts. Filling fraction and material of the insert affect the change law of the gap width versus the rotation angles of square inserts.


Author(s):  
Jihong Wen ◽  
Xisen Wen ◽  
Dianlong Yu

The flexural vibration band gaps in one-dimensional periodic sandwich beams with auxetic core are studied basing on the theory of Phononic crystals. The band structures of one-dimensional periodic sandwich beams with auxetic core are presented with the plane wave expansion method, the regular calculation method in phononic crystals. Further, the effects of material parameters and structure parameters on the gaps are analyzed. The vibration band gaps in the sandwich beams provide a new idea for the vibration controlling of the structure.


2014 ◽  
Vol 654 ◽  
pp. 16-19
Author(s):  
Hao Jiang Zhao ◽  
Rong Qiang Liu ◽  
Hong Wei Guo

The improved plane wave expansion method is used to investigate the effects of material parameters on the longitudinal vibration band gaps in thin phononic crystal plates. Both square lattice and graphite lattice are considered. Results show that the parameters playing the essential roles are the mass density ratio and the Young modulus ratio of the scatterers and the host materials.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Connor D. Pierce ◽  
Kathryn H. Matlack

Phononic crystals (PCs) have been widely reported to exhibit band gaps, which for non-dissipative systems are well defined from the dispersion relation as a frequency range in which no propagating (i.e., non-decaying) wave modes exist. However, the notion of a band gap is less clear in dissipative systems, as all wave modes exhibit attenuation. Various measures have been proposed to quantify the “evanescence” of frequency ranges and/or wave propagation directions, but these measures are not based on measurable physical quantities. Furthermore, in finite systems created by truncating a PC, wave propagation is strongly attenuated but not completely forbidden, and a quantitative measure that predicts wave transmission in a finite PC from the infinite dispersion relation is elusive. In this paper, we propose an “evanescence indicator” for PCs with 1D periodicity that relates the decay component of the Bloch wavevector to the transmitted wave amplitude through a finite PC. When plotted over a frequency range of interest, this indicator reveals frequency regions of strongly attenuated wave propagation, which are dubbed “fuzzy band gaps” due to the smooth (rather than abrupt) transition between evanescent and propagating wave characteristics. The indicator is capable of identifying polarized fuzzy band gaps, including fuzzy band gaps which exists with respect to “hybrid” polarizations which consist of multiple simultaneous polarizations. We validate the indicator using simulations and experiments of wave transmission through highly viscoelastic and finite phononic crystals.


Author(s):  
Victor Gustavo Ramos Costa Dos Santos ◽  
Edson Jansen Pedrosa de Miranda Junior ◽  
Jose Maria Campos dos Santos

Author(s):  
Zi-Gui Huang ◽  
Yunn-Lin Hwang ◽  
Pei-Yu Wang ◽  
Yen-Chieh Mao

The excellent applications and researches of so-called photonic crystals raise the exciting researches of phononic crystals. By the analogy between photon and phonon, repetitive composite structures that are made up of different elastic materials can also prevent elastic waves of some certain frequencies from passing by, i.e., the frequency band gap features also exist in acoustic waves. In this paper, we present the results of the tunable band gaps of acoustic waves in two-dimensional phononic crystals with reticular band structures using the finite element method. Band gaps variations of the bulk modes due to different thickness and angles of reticular band structures are calculated and discussed. The results show that the total elastic band gaps for mixed polarization modes can be enlarged or reduced by adjusting the orientation of the reticular band structures. The phenomena of band gaps of elastic or acoustic waves can potentially be utilized for vibration-free, high-precision mechanical systems, and sound insulation.


Sign in / Sign up

Export Citation Format

Share Document