Cricket (Acheta domesticus) protein hydrolysates’ impact on the physicochemical, structural and sensory properties of tortillas and tortilla chips

2020 ◽  
pp. 1-12 ◽  
Author(s):  
G. Calzada Luna ◽  
F. San Martin-Gonzalez ◽  
L.J. Mauer ◽  
A.M. Liceaga

Consumer interest towards consumption of more sustainable protein sources has led way towards the adoption of insect protein for human food applications. Research shows that insect proteins utilised as food ingredients are more promising to be accepted by Westerners. In this study, cricket protein hydrolysates (CPH) were produced using Alcalase (AL) and Flavourzyme (FL) proteases. The physicochemical and structural properties, as well as the sensory acceptability of corn tortillas formulated with 20% (w/w) CPH were evaluated. CPH-tortillas contained all essential amino acids, including 40% of the daily lysine requirement. In raw corn masa (dough), AL-CPH increased the elastic modulus (G’), indicating cross-linking between polymers, while FL-CPH decreased G’. Tortillas formulated with AL-CPH resulted in matrices with low hardness and extensibility values, while FL-CPH tortillas developed a strong and flexible structure, indicating differences in intermolecular interactions between the AL- and FL-CPH and the tortilla matrix in the cooked tortillas compared to the raw masa. Sensory evaluation results showed acceptability (scores>6.0) towards tortillas chips formulated with 20% CPH. Enzymatic hydrolysis of cricket protein can create peptides with functional characteristics and sensory acceptability for their use as ingredients in food formulation.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1586
Author(s):  
Jessika N. Humerez-Flores ◽  
Sarah H. E. Verkempinck ◽  
Clare Kyomugasho ◽  
Paula Moldenaers ◽  
Ann M. Van Loey ◽  
...  

In the context of the increasing interest in natural food ingredients, the emulsifying and emulsion-stabilizing properties of three rhamnogalacturonan-rich apple pectin-derived samples were assessed by evaluating a range of physicochemical properties. An apple pectin (AP74) was structurally modified by a β-eliminative reaction to obtain a RG-I-rich pectin sample (AP-RG). Subsequent acid hydrolysis of AP-RG led to the generation of pectin material with partially removed side chains (in particular arabinose depleted) (AP-RG-hydrolyzed), thus exhibiting differences in rhamnose, arabinose, and galactose in comparison to AP-RG. All samples exhibited surface activity to some extent, especially under acidic conditions (pH 2.5). Furthermore, the viscosity of the samples was assessed in relation to their emulsion-stabilizing properties. In a stability study, it was observed that the non-degraded AP74 sample at pH 2.5 exhibited the best performance among all the apple pectin-derived samples evaluated. This emulsion presented relatively small oil droplets upon emulsion production and was less prone to creaming than the emulsions stabilized by the (lower molecular weight) RG-I-rich materials. The AP-RG and AP-RG-hydrolyzed samples presented a slightly better emulsion stability at pH 6.0 than at pH 2.5. Yet, neither pectin sample was considered having good emulsifying and emulsion-stabilizing properties, indicated by the presence of coalesced and flocculated oil droplets.



RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 79270-79278 ◽  
Author(s):  
Aishwarya Mohan ◽  
Subin R. C. K. Rajendran ◽  
Quan Sophia He ◽  
Laurent Bazinet ◽  
Chibuike C. Udenigwe

Encapsulation of food protein hydrolysates and peptides using protein, polysaccharide and lipid carriers is needed to enhance their biostability and bioavailability for application as health-promoting functional food ingredients and nutraceuticals.



2021 ◽  
pp. 130336
Author(s):  
Kora Kassandra Grossmann ◽  
Michael Merz ◽  
Daniel Appel ◽  
Maria Monteiro De Araujo ◽  
Lutz Fischer


Author(s):  
Yuan-yuan Chang ◽  
Chong-hao Bi ◽  
Li-jun Wang ◽  
Dong Li ◽  
Benu Adhikari ◽  
...  

Abstract Enzymatic hydrolysis of flaxseed protein (FP) was carried out using trypsin in order to obtain flaxseed protein hydrolysates possessing better antioxidative property and modified rheological properties. The antioxidative properties of hydrolysates were much higher than the unhydrolyzed flaxseed protein. The hydrolysis also significantly reduced the hydrodynamic diameter of the magnitude of zeta potential of the dispersions. The gelling point of the hydrolysates occurred earlier than the unhydrolyzed sample while the duration of hydrolysis (30–120 min) did not affect gelling point of the hydrolysates. Considerable decrease in the gel strength and the frequency dependence of gel strength were observed in gels produced using hydrolyzed flaxseed protein. The above findings indicate that hydrolysates possessing high degree of antioxidative properties. The gels produces from these hydrolysates will have fast gelling property and will produce gels with reasonable strength. Thus, flaxseed protein hydrolysates obtained from trypsin hydrolysis can be used in applications that require proteins with higher antioxidative properties but softer texture.



Author(s):  
Vitor Geniselli da Silva ◽  
Ruann Janser Soares de Castro

Aiming to explore the use of ionic liquids (ILs) not yet described in the literature, this work evaluated the hydrolysis of proteins from chicken viscera using the protease Alcalase modified and unmodified by the IL tetramethylammonium bromide. The protein hydrolysates produced in the presence of the IL presented values of antioxidant activities 40% higher than the hydrolysates obtained without IL. In addition, with the presence of the IL, it was possible to obtain protein hydrolysates from chicken viscera with similar antioxidant activities, compared to the protein hydrolysates produced without IL, using 1/3 of the amount of enzyme.



2020 ◽  
Vol 2 (1) ◽  
pp. 63-73
Author(s):  
Tejasari ◽  
Sih Yuwanti ◽  
Mohammad Bazar Ahmadi ◽  
Yuna Luki Afsari

Peptide with hydrophobic amino acids had been studied for their inhibitory activity against angiotensin-I converting enzyme (ACE-1) transformation into ACE-2 and prevention of hypertension. The active peptides may come from alcalase and flavourzyme hydrolysis of bean protein. This study aimed to measure ACE-1 inhibitory of protein hydrolysates from Vigna sp. bean (mung bean and cowpea) that grew in Indonesia, and its solubility. The bean protein (22.9 - 23.6 %) was extracted using isoelectric precipitation at pH 4-4.6. The extracts were hydrolyzed at pH 8 for alcalase and pH 7 for flavourzyme, followed with inactivation at 80-85 oC. ACE-1 inhibitory activity was calculated based on the amount of hippuric acid (HA) formed by the hydrolysis of Hippuryl-His-Leu (HHL), in spectrophotometry detection method (228 nm). Ultrachromatography evaluation showed that the protein hydrolysates of mungbean contained higher hydrophobic amino acids (382 mg/g protein) compared to those of cowpea (329 mg/g protein). Protein hydrolysates of both beans from alcalase hydrolysis have higher ACE-1 inhibitory activity rather than those from flavourzyme. Protein hydrolysate from Vigna spp bean protein hydrolysis by alcalase, contained small molecular weight peptides (3.9-4.63 kDa) and high ACE-1 inhibition ability (80-93 %), and therefore suggested as antihypertensive nutraceuticals. Highest solubility of protein hydrolysates resulted from alcalase hydrolysis of both beans were observed at pH 8, while those resulted from flavorzyme hydrolysis were at pH 7, respectively.



2011 ◽  
Vol 20 (No. 1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Hrčková ◽  
M. Rusňáková ◽  
J. Zemanovič

Commercial defatted soy flour (DSF) was dispersed in distilled water at pH 7 to prepare 5% aqueous dispersion. Soy protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of the DSF using three different proteases (Flavourzyme 1000 L, No-vozym FM 2.0 L and Alcalase 2.4 L FG). The highest degree of hydrolysis (DH 39.5) was observed in the presence of protease Flavourzyme. SPH were used for measuring functional properties (foaming stability, gelation). Treatment with Flavourzyme improved foaming of proteins of DSF. Foaming stability was low in the presence of Novozym. Proteases treated DSF showed good gelation properties, mainly in the case of treatment with Flavourzyme. SDS-PAGE analysis showed that after enzyme ad-dition to the 5% aqueous dispersion of DSF each enzyme degraded both b-conglycinin and glycinin. In general, the basic polypeptide from glycinin showed the highest resistance to proteolytic activity. The most abundant free amino acids in the hydrolysates were histidine (30%), leucine (24%) and tyrosine (19%) in the case of the treatment with proteases Alcalase and Novozym, and arginine (22.1%), leucine (10.6%) and phenylalanine (12.9%) in the case of the treatment with Flavourzyme.  



2014 ◽  
Vol 707 ◽  
pp. 149-153 ◽  
Author(s):  
Xiao Hu ◽  
Xian Qing Yang ◽  
Lai Hao Li ◽  
Yan Yan Wu ◽  
Wan Ling Lin ◽  
...  

Microalgae protein hydrolysates (MPH) were obtained by enzymatic hydrolysis of defatted microalgae meal using neutral protease. The protein recovery, degree of hydrolysis, and the antioxidant activities of the hydrolysates were investigated. The results demonstrated that hydrolysates prepared by neutral protease at 50 °C for 4 h exhibited the strongest antioxidant activity. Under these conditions, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity and the reducing power of the hydrolysates were 68.3%, 50.8% and 1.303, respectively.



2014 ◽  
Vol 3 (6) ◽  
pp. 1 ◽  
Author(s):  
George E. Inglett ◽  
Diejun Chen ◽  
Sean Liu

<p>Amaranth flour (<em>Salvia hispanica</em> L.), gluten free and rich in essential amino acids, was composited with oat functional products containing ?-glucan known for lowering blood cholesterol and preventing heart disease. The objective of this research was to study the pasting and rheological properties of amaranth flour interacted with functional oat products using Rapid Visco Analyzer followed by an advanced rheometer. The initial peak viscosities of amaranth-Nutrim (oat bran hydrocolloids) and amaranth-OBC (oat bran concentrate) composites were increased with higher Nutrim and OBC contents. The final pasting viscosities of amaranth-OBC composites were increased significantly with higher OBC contents while amaranth-Nutrim composites showed colloidal gel properties similar to Nutrim. On other hand, amaranth interacted with oat bran concentrate displayed the highest rheological solid properties as elastic gels. Shear thinning properties were observed for all the interactions between amaranth flour and functional oat products. The improved water holding capacities were found for interacted compositions with Nutrim and oat bran concentrate compared to amaranth flour. These amaranth flour and oat products compositions demonstrated improved nutritional value and texture qualities for functional food applications.</p>



Sign in / Sign up

Export Citation Format

Share Document