Frequency of three mutations in the fumonisin biosynthetic gene cluster of Fusarium fujikuroi that are predicted to block fumonisin production

2021 ◽  
Vol 14 (1) ◽  
pp. 49-59
Author(s):  
S. Sultana ◽  
W.X. Bao ◽  
M. Shimizu ◽  
K. Kageyama ◽  
H. Suga

Fusarium fujikuroi is the most prominent pathogen found in rice. In addition to gibberellin, F. fujikuroi produces various secondary metabolites, including the polyketide mycotoxins, fumonisins. Fumonisin production is conferred by the fumonisin biosynthetic gene (FUM) cluster consisting of 15-17 genes. F. fujikuroi is phylogenetically subclassified into one group with fumonisin production (F-group) and another group in which fumonisin production is undetectable (G-group). In a previous study, a G-to-T substitution (FUM21_G2551T) in the FUM cluster transcription factor gene, FUM21, was identified as a cause of fumonisin-non-production in a G-group strain. In the current study, further analysis of G-group strains identified two additional mutations that involved FUM-cluster genes essential for fumonisin production: (1) a 22.4-kbp deletion in the FUM10-FUM19 region; and (2) a 1.4-kbp insertion in FUM6. PCR analysis of 44 G-group strains, indicated that 84% had the FUM21_G2551T mutation, 50% had the 22.4-kbp FUM10-FUM19 deletion, and 32% had the 1.4-kbp insertion in FUM6, and some strains had two or all the mutations. None of the mutations were detected in the 51 F-group strains examined. Each of the three mutations alone could account for the lack of fumonisin production in G-group strains. However, one G-group strain did not have any of the mutations. Therefore, another mutation(s) is likely responsible for the lack of fumonisin production in some G-group strains of F. fujikuroi.

mBio ◽  
2021 ◽  
Author(s):  
Wenjie Wang ◽  
Milton Drott ◽  
Claudio Greco ◽  
Dianiris Luciano-Rosario ◽  
Pinmei Wang ◽  
...  

Fungal secondary metabolites (SMs) are an important source of pharmaceuticals on one hand and toxins on the other. Efforts to identify the biosynthetic gene clusters (BGCs) that synthesize SMs have yielded significant insights into how variation in the genes that compose BGCs may impact subsequent metabolite production within and between species.


MedChemComm ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 780-788 ◽  
Author(s):  
Behnam Nazari ◽  
Clarissa C. Forneris ◽  
Marcus I. Gibson ◽  
Kyuho Moon ◽  
Kelsey R. Schramma ◽  
...  

We report the largest actinomycete genome to date, which encodes >30 secondary metabolites, including the kistamicin biosynthetic gene cluster.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Anina Buchmann ◽  
Michael Eitel ◽  
Pierre Koch ◽  
Paul N. Schwarz ◽  
Evi Stegmann ◽  
...  

The bacterium Nocardia terpenica IFM 0406 is known as the producer of the immunosuppressant brasilicardin A. Here, we report the completely sequenced genome of strain IFM 0406, which facilitates the heterologous expression of the brasilicardin biosynthetic gene cluster but also unveils the intriguing biosynthetic capacity of the strain to produce secondary metabolites.


2007 ◽  
Vol 189 (17) ◽  
pp. 6312-6323 ◽  
Author(s):  
Andrew D. Berti ◽  
Nathan J. Greve ◽  
Quin H. Christensen ◽  
Michael G. Thomas

ABSTRACT Pseudomonas species are known to be prolific producers of secondary metabolites that are synthesized wholly or in part by nonribosomal peptide synthetases. In an effort to identify additional nonribosomal peptides produced by these bacteria, a bioinformatics approach was used to “mine” the genome of Pseudomonas syringae pv. tomato DC3000 for the metabolic potential to biosynthesize previously unknown nonribosomal peptides. Herein we describe the identification of a nonribosomal peptide biosynthetic gene cluster that codes for proteins involved in the production of six structurally related linear lipopeptides. Structures for each of these lipopeptides were proposed based on amino acid analysis and mass spectrometry analyses. Mutations in this cluster resulted in the loss of swarming motility of P. syringae pv. tomato DC3000 on medium containing a low percentage of agar. This phenotype is consistent with the loss of the ability to produce a lipopeptide that functions as a biosurfactant. This work gives additional evidence that mining the genomes of microorganisms followed by metabolite and phenotypic analyses leads to the identification of previously unknown secondary metabolites.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Anina Buchmann ◽  
Carolina Cano-Prieto ◽  
Ahmed Nafis ◽  
Mustapha Barakate ◽  
Mohamed Baz ◽  
...  

Streptomyces sp. strain Z26 exhibited antifungal activity and turned out to be a producer of the secondary metabolites novonestmycin A and B. The 6.5-Mb draft genome gives insight into the complete secondary metabolite production capacity and builds the basis to find and locate the biosynthetic gene cluster encoding the novonestmycins.


2019 ◽  
Vol 12 (3) ◽  
pp. 213-222 ◽  
Author(s):  
M.D. Lebar ◽  
B.M. Mack ◽  
C.H. Carter-Wientjes ◽  
M.K. Gilbert

The fungus Aspergillus flavus is an opportunistic crop pathogen that produces aflatoxins. Aflatoxins are potent carcinogenic and hepatotoxic secondary metabolites that are highly regulated in most countries. A. flavus also produces many other secondary metabolites and harbours more than 50 putative secondary metabolite biosynthetic gene clusters that have yet to be characterised. Bioactive secondary metabolites that augment the ability of the fungus to infect crops are of particular interest. Biosynthetic gene cluster 11 in A. flavus has been recently shown to encode for the biosynthesis of aspergillic acid, a toxic hydroxamic acid-containing pyrazinone compound that can bind iron, resulting in a red-orange pigment known as ferriaspergillin. A decrease in A. flavus pathogenicity and aflatoxin contamination was observed when aspergillic acid biosynthesis was blocked during maize seed infection. In this study, we probe the available genomes of Aspergillus species for biosynthetic gene cluster 11 homologs. We find that all species possessing gene cluster 11 produce aspergillic acid or a closely related isomer. We demonstrate that the Aspergillus section Flavi species harbouring biosynthetic gene cluster 11 produce a mixture of aspergillic acid, hydroxyaspergillic acid, and aspergillic acid analogs differing only in the amino acid precursors. Interestingly, many Aspergillus section Circumdati species, known mainly for their production of the problematic mycotoxin ochratoxin A, also harbour gene cluster 11 homologs, but do not produce aspergillic acid. Instead, these species produce neoaspergillic acid and its hydroxylated analog neohydroxyaspergillic acid, indicating that cluster 11 is responsible for neoaspergillic acid biosynthesis in Aspergillus section Circumdati.


2021 ◽  
Vol 7 (5) ◽  
pp. 374
Author(s):  
Gregory Evdokias ◽  
Cameron Semper ◽  
Montserrat Mora-Ochomogo ◽  
Marcos Di Falco ◽  
Thi Truc Minh Nguyen ◽  
...  

Previously, DNA microarrays analysis showed that, in co-culture with Bacillus subtilis, a biosynthetic gene cluster anchored with a nonribosomal peptides synthetase of Aspergillus niger is downregulated. Based on phylogenetic and synteny analyses, we show here that this gene cluster, NRRL3_00036-NRRL3_00042, comprises genes predicted to encode a nonribosomal peptides synthetase, a FAD-binding domain-containing protein, an uncharacterized protein, a transporter, a cytochrome P450 protein, a NAD(P)-binding domain-containing protein and a transcription factor. We overexpressed the in-cluster transcription factor gene NRRL3_00042. The overexpression strain, NRRL3_00042OE, displays reduced growth rate and production of a yellow pigment, which by mass spectrometric analysis corresponds to two compounds with masses of 409.1384 and 425.1331. We deleted the gene encoding the NRRL3_00036 nonribosomal peptides synthetase in the NRRL3_00042OE strain. The resulting strain reverted to the wild-type phenotype. These results suggest that the biosynthetic gene cluster anchored by the NRRL3_00036 nonribosomal peptides synthetase gene is regulated by the in-cluster transcriptional regulator gene NRRL3_00042, and that it is involved in the production of two previously uncharacterized compounds.


Sign in / Sign up

Export Citation Format

Share Document