nonribosomal peptides
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 33)

H-INDEX

23
(FIVE YEARS 2)

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 693
Author(s):  
Olga Kunyavskaya ◽  
Azat M. Tagirdzhanov ◽  
Andrés Mauricio Caraballo-Rodríguez ◽  
Louis-Félix Nothias ◽  
Pieter C. Dorrestein ◽  
...  

Microbial natural products are a major source of bioactive compounds for drug discovery. Among these molecules, nonribosomal peptides (NRPs) represent a diverse class of natural products that include antibiotics, immunosuppressants, and anticancer agents. Recent breakthroughs in natural product discovery have revealed the chemical structure of several thousand NRPs. However, biosynthetic gene clusters (BGCs) encoding them are known only for a few hundred compounds. Here, we developed Nerpa, a computational method for the high-throughput discovery of novel BGCs responsible for producing known NRPs. After searching 13,399 representative bacterial genomes from the RefSeq repository against 8368 known NRPs, Nerpa linked 117 BGCs to their products. We further experimentally validated the predicted BGC of ngercheumicin from Photobacterium galatheae via mass spectrometry. Nerpa supports searching new genomes against thousands of known NRP structures, and novel molecular structures against tens of thousands of bacterial genomes. The availability of these tools can enhance our understanding of NRP synthesis and the function of their biosynthetic enzymes.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1483
Author(s):  
Anna Fidor ◽  
Katarzyna Cekała ◽  
Ewa Wieczerzak ◽  
Marta Cegłowska ◽  
Franciszek Kasprzykowski ◽  
...  

Nostocyclopeptides (Ncps) are a small class of bioactive nonribosomal peptides produced solely by cyanobacteria of the genus Nostoc. In the current work, six Ncps were isolated from Nostoc edaphicum strain CCNP1411. The bioactivity of these compounds was tested in vitro against 20S proteasome, a proteolytic complex that plays an important role in maintaining cellular proteostasis. Dysfunction of the complex leads to many pathological disorders. The assays indicated selective activity of specific Ncp variants. For two linear peptide aldehydes, Ncp-A2-L and Ncp-E2-L, the inhibitory effects on chymotrypsin-like activity were revealed, while the cyclic variant, Ncp-A2, inactivated the trypsin-like site of this enzymatic complex. The aldehyde group was confirmed to be an important element of the chymotrypsin-like activity inhibitors. The nostocyclopeptides, as novel inhibitors of 20S proteasome, increased the number of natural products that can be considered potential regulators of cellular processes.


2021 ◽  
Author(s):  
Dmitry N Konanov ◽  
Danil V Krivonos ◽  
Vladislav V Babenko ◽  
Elena N Ilina

Motivation: Nonribosomal peptides (NRPs) are a class of secondary metabolites synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSs) and mainly produced by bacteria and fungi. It has been shown that NRPs have a huge structural and functional diversity including antimicrobial activity, therefore, they are of increasing interest for modern biotechnology. Methods such as NMR and LC-MS/MS allow to determine NRP structure precisely, but it is often not a trivial task to find natural producers of them. Today, searches are usually performed manually, mostly with tools such as antiSMASH or Prism. However, there are cases when potential producers should be found among hundreds of strains, for instance, when analyzing metagenomes data. Thus, the development of automated approaches is a high-priority task for further NRP research. Results: We developed BioCAT, a two-side approach to find biosynthesys gene clusters (BGCs) which may produce a given NRP when the structure of interesting NRP has already been found. Formally, the BioCAT unites the antiSMASH software and the rBAN retrosynthesis tool but some improvements were added to both gene cluster and NRP chemical structure analyses. The main feature of the method is PSSM usage to store specificities of NRPS modules, which has increased the alignment quality in comparison with more strict approaches developed earlier. An ensemble model was implemented to calculate the final alignment score. We tested the method on a manually curated NRP producers database and compared it with a competing tool called GARLIC. Finally, we showed the method applicability on a several external examples.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna Tippelt ◽  
Markus Nett

AbstractAs a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Likui Feng ◽  
Matthew T. Gordon ◽  
Ying Liu ◽  
Kari B. Basso ◽  
Rebecca A. Butcher

AbstractPolyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of Caenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis.


Synlett ◽  
2021 ◽  
Author(s):  
Juan R. Del Valle ◽  
Taylor A. Gerrein ◽  
Yassin M. Elbatrawi

AbstractWe report an asymmetric synthesis of the (3R,5R)-γ-hydroxypiperazic acid (γ-OHPiz) residue encountered in several bioactive nonribosomal peptides. Our strategy relies on a diastereoselective enolate hydroxylation reaction and electrophilic N-amination to provide the acyclic γ-OHPiz precursor. This orthogonally protected α-hydrazino acid intermediate is amenable to late-stage diazinane ring formation following incorporation into a peptide chain. We determined the N-terminal amide rotamer propensity of the γ-OHPiz residue and showed that the γ-OH substituent enhances trans-amide bias relative to piperazic acid.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Přívratský ◽  
Jiří Novák

AbstractNonribosomal peptides and polyketides are natural products commonly synthesized by microorganisms. They are widely used in medicine, agriculture, environmental protection, and other fields. The structures of natural products are often analyzed by high-resolution tandem mass spectrometry, which becomes more popular with its increasing availability. However, the characterization of nonribosomal peptides and polyketides from tandem mass spectra is a nontrivial task because they are composed of many uncommon building blocks in addition to proteinogenic amino acids. Moreover, many of them have cyclic and branch-cyclic structures. Here, we introduce MassSpecBlocks – an open-source and web-based tool that converts the input chemical structures in SMILES format into sequences of building blocks. The structures can be searched in public databases PubChem, ChemSpider, ChEBI, NP Atlas, COCONUT, and Norine and edited in a user-friendly graphical interface. Although MassSpecBlocks can serve as a stand-alone database, our primary goal was to enable easy construction of custom sequence and building block databases, which can be used to annotate mass spectra in CycloBranch software. CycloBranch is an open-source, cross-platform, and stand-alone tool that we recently released for annotating spectra of linear, cyclic, branched, and branch-cyclic nonribosomal peptides and polyketide siderophores. The sequences and building blocks created in MassSpecBlocks can be easily exported into a plain text format used by CycloBranch. MassSpecBlocks is available online or can be installed entirely offline. It offers a REST API to cooperate with other tools.


2021 ◽  
Vol 10 (22) ◽  
Author(s):  
Mohannad Mahmoud ◽  
Suha Jabaji

Paenibacillus polymyxa strain HOB6 was isolated from hemp seed oil. The strain displays antimicrobial activity against fungal pathogens and has potential for development as a biopesticide against cannabis diseases. Its genome was sequenced and annotated, uncovering the ability to encode the biosynthetic pathways for antimicrobial lanthipeptides and nonribosomal peptides.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Pang ◽  
Rijing Liao ◽  
Zhijun Tang ◽  
Shengjie Guo ◽  
Zhuhua Wu ◽  
...  

AbstractLinear nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) template the modular biosynthesis of numerous nonribosomal peptides, polyketides and their hybrids through assembly line chemistry. This chemistry can be complex and highly varied, and thus challenges our understanding in NRPS and PKS-programmed, diverse biosynthetic processes using amino acid and carboxylate building blocks. Here, we report that caerulomycin and collismycin peptide-polyketide hybrid antibiotics share an assembly line that involves unusual NRPS activity to engage a trans-acting flavoprotein in C-C bond formation and heterocyclization during 2,2’-bipyridine formation. Simultaneously, this assembly line provides dethiolated and thiolated 2,2’-bipyridine intermediates through differential treatment of the sulfhydryl group arising from l-cysteine incorporation. Subsequent l-leucine extension, which does not contribute any atoms to either caerulomycins or collismycins, plays a key role in sulfur fate determination by selectively advancing one of the two 2,2’-bipyridine intermediates down a path to the final products with or without sulfur decoration. These findings further the appreciation of assembly line chemistry and will facilitate the development of related molecules using synthetic biology approaches.


2021 ◽  
Vol 7 (5) ◽  
pp. 374
Author(s):  
Gregory Evdokias ◽  
Cameron Semper ◽  
Montserrat Mora-Ochomogo ◽  
Marcos Di Falco ◽  
Thi Truc Minh Nguyen ◽  
...  

Previously, DNA microarrays analysis showed that, in co-culture with Bacillus subtilis, a biosynthetic gene cluster anchored with a nonribosomal peptides synthetase of Aspergillus niger is downregulated. Based on phylogenetic and synteny analyses, we show here that this gene cluster, NRRL3_00036-NRRL3_00042, comprises genes predicted to encode a nonribosomal peptides synthetase, a FAD-binding domain-containing protein, an uncharacterized protein, a transporter, a cytochrome P450 protein, a NAD(P)-binding domain-containing protein and a transcription factor. We overexpressed the in-cluster transcription factor gene NRRL3_00042. The overexpression strain, NRRL3_00042OE, displays reduced growth rate and production of a yellow pigment, which by mass spectrometric analysis corresponds to two compounds with masses of 409.1384 and 425.1331. We deleted the gene encoding the NRRL3_00036 nonribosomal peptides synthetase in the NRRL3_00042OE strain. The resulting strain reverted to the wild-type phenotype. These results suggest that the biosynthetic gene cluster anchored by the NRRL3_00036 nonribosomal peptides synthetase gene is regulated by the in-cluster transcriptional regulator gene NRRL3_00042, and that it is involved in the production of two previously uncharacterized compounds.


Sign in / Sign up

Export Citation Format

Share Document