Salinity Induced Effects on Growth Parameters, Chemical and Biochemical Characteristics of Two Forage Sorghum (Sorghum bicolor L.) Cultivars

2011 ◽  
Vol 11 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Hossein Sadeghi ◽  
Fatemeh Ansar shourijeh
1996 ◽  
Vol 76 (1) ◽  
pp. 123-125 ◽  
Author(s):  
W. P. McCaughey ◽  
M. C. Therrien ◽  
R. Mabon

After a series of hot, dry years in the late 1980s a study was conducted to assess the suitability and yield stability of forage sorghum (Sorghum bicolor L. Moench.) in southern Manitoba. The effects of genotype and environment on DM yield of seven forage sorghum genotypes were evaluated (1990–1992) in six different environments. Genotype, environment and genotype × environment accounted for 3.9% (P < 0.0001), 84.8% (P < 0.0001) and 3.3% (P < 0.001) of the total variation in DM yield, respectively. The fact that environment accounted for most of the variability in DM yield and that relative rankings of varieties differed across environments indicated that yield was unstable. Forage sorghum produced acceptable DM yield only in years which were warmer (> 2700 CHU) than average (2200–2600 CHU) for southern Manitoba. Forage sorghum is not recommended for southern Manitoba unless the climate warms to where 2700 CHU are consistently accumulated during the growing season. Key words: Forage, sorghum, sorghum-sudangrass, C4, temperature, yield


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 78 ◽  
Author(s):  
Saeid Vaezi Rad ◽  
Said Ali Reza Valadabadi ◽  
Majid Pouryousef ◽  
Saeid Saifzadeh ◽  
Hamid Reza Zakrin ◽  
...  

In order to evaluate the quantity and quality of forage when intercropping forage sorghum (Sorghum bicolor L.) with lathyrus (Lathyrus sativus) and hairy vetch (Vicia villosa), and using different weed management methods such as double cropping, a factorial experiment in a randomized complete block design with three replications was carried out at the research station of the University of Zanjan over two growing seasons (2015 and 2016). In this experiment, the intercropping of forage sorghum with lathyrus and hairy vetch at six levels with single cropping of forage sorghum, lathyrus, and hairy vetch, and three weed management strategies (no weed control, full weed control, and single weed control) was evaluated. The results showed that most forage sorghum traits were significantly (p ≤ 0.05) affected by different sowing ratios. The highest fresh forage yield of sorghum (77.9 ton/ha) and lowest (49.0 ton/ha) were obtained with sorghum + 33% hairy vetch and sorghum + 100% lathyrus, respectively. Forage qualitative traits were also affected by intercropping and weed management. The highest average acid detergent fiber (ADF), neutral detergent fiber (NDF), and total ash percentage (ASH) were obtained with 100% sorghum + 66% lathyrus and 33% hairy vetch. The results showed that sorghum intercropping with 33% lathyrus led to a significant reduction in dry matter intake and relative feed value with no weed control and single weed control. This study demonstrated that, by selecting the appropriate intercropping ratios and forage legumes, we could largely control sorghum weeds in addition to improving the quantitative and qualitative yield of sorghum forage.


2012 ◽  
Vol 45 (4) ◽  
pp. 57-64 ◽  
Author(s):  
M. Afzal ◽  
A. Ahmad ◽  
Au.H. Ahmad

Abstract A field experiment was conducted on sorghum (Sorghum bicolor (L.) Moench cv.) under three cutting system to determine the effect of nitrogen on growth and yield at University of Agriculture Faisalabad, Pakistan, during the season 2010-2011. The experiment was laid out in Randomized Complete Block Design (RCBD), using three replications. There were four levels of nitrogen 0, 50, 75 and 100 kg N/acre in the form of urea. The growth parameters like plant height, number of leaves, leaf area is determined periodically. First reading taken after 20 days of sowing while second and third was taken after 15 days of first cutting. Yield parameter like plant population, fresh and dry weight was determined in three cuttings. Results showed that increasing nitrogen dose increased all growth attributes. Results revealed for first, second and third cuttings showed significant differences at all growth attributes. Thus, the maximum plant height was observed in N4 (100 kg N/acre), having plant height 193.92, 195.24 and 192.79 cm in first, second and third cutting, respectively, which was followed by the treatment N3 (75 kg N/acre), having 179.70 cm in first cutting, while second and third cutting have same plant height 168.62 cm. The exception was the plant population showed non significant behavior in second and third cutting while number of leaves per plant in second cutting only and protein % in third cutting showed non significant difference with nitrogen application.


Sign in / Sign up

Export Citation Format

Share Document