scholarly journals Evaluation of Early Seedling, Root and Grain Yield Components of Spring Wheat Genotypes in Two Sowing Dates

2018 ◽  
Vol 17 (4) ◽  
pp. 191-197
Author(s):  
Ankit Ojha ◽  
Madhav Prasad Pan ◽  
Dhruba Bahadur Th ◽  
Bishnu Raj Ojha ◽  
Raju Kharel

2011 ◽  
Vol 48 (No. 5) ◽  
pp. 230-235
Author(s):  
M. Sabo ◽  
M. Bede ◽  
Ž.U. Hardi

Variability of grain yield components of some new winter wheat genotypes (e.g. Lara, Lenta, Kruna, Fiesta, Perla, and one line of AG-45) was examined. The analysis of grain yield components of these genotypes and the line was undertaken in a two-year research (1997/1998 and 1998/1999) at two different locations. Significant differences among genotypes, locations and research years were established. In the first experimental year (1997/1998) there was a high positive correlation between nearly all components of the grain yield. The most significant correlation was found between the grain number per spike and grain yield. In the second experimental year (1998/1999) the components did not show statistically significant correlation with the grain yield. It seems that the grain yield of examined genotypes depended significantly on the grain number per spike, grain mass per spike, and agroecological conditions during the vegetation period, whereby the potential yield was determined by the interaction among genotypes, location and production year. The biggest differences among examined genotypes of winter wheat were found in the stem height and spike length.



1998 ◽  
Vol 3 (2) ◽  
pp. 13
Author(s):  
R. Ahmad ◽  
N. Ahmad ◽  
J.C. Stark ◽  
A. Tanveer

Yield and developmental characteristics of crop genotypes grown at different levels of water availability are often used to select genotypes that are adapted to variable moisture environments. Field studies were conducted at Aberdeen. Idaho, USA in 1992 and 1993 to evaluate the effects of varying moisture supply on grain yield and yield components of spring wheat genotypes. In both years, 12 spring wheat (Triticum aestivum L.) genotypes were grown under three irrigation levels (well-watered. moderate water-stress and severe water-stress) imposed during the periods from mid-tillering to anthesis with a line source sprinkler irrigation system. Grain yield and yield components (spikes m-2, spikelets spike-1, kernels spikelet-1,  kernels spike-1, and kernel weight) were used to evaluate the genotypic response to water stress. Overall, water stress caused a reduction in grain yield and yield components. Genotypes exhibited a large year-to-year variation in their ranks for grain yield. Medium-tall growing genotypes (IDO 367. lDO 369 and Rick) generally produced high yields under water stress conditions in 1992 (relatively dry year), while short -medium genotypes (WPB 926. Yecora Rojo and Pondera) produced high yields under water stress conditions in 1993 (relatively wet year). Chris and Serra were the lowest yielding genotypes under water stress conditions in both years. Under moderate stress conditions. 100 367 and Yecora Rojo had consistently high yields. Genotypic yield differences under water stress conditions were primarily related to the differences in the numbers of spikes m". Therefore, a tendency for high plasticity for Spikes per unit area could be used to select wheat genotypes for improved drought tolerance.



1981 ◽  
Vol 96 (3) ◽  
pp. 603-610 ◽  
Author(s):  
P. Innes ◽  
R. D. Blackwell

SUMMARYAutomatic plot covers were used in a study of the effects of drought on the yield and water use of two spring wheat genotypes. The experiment tested the effects of drought at different stages of growth on yield and yield components. There was complete control over the water supplied to the plots, and a fully irrigated control treatment was included.The yields of the two genotypes were similar under fully irrigated conditions, but the yield components differed: Highbury had more grains per ear and TW 269/9/3/4 more ears per unit ground area and a higher mean grain mass. An early drought, which began 4 weeks before anthesis, caused a reduction in number of grains per ear in Highbury, which was outyielded by TW 269. Late drought also reduced yields differentially, reducing mean grain mass, and hence grain yield, more in TW 269 than in Highbury. Total shoot dry matter and grain yield were found generally to increase as water use increased. The average water use efficiency was found to depend upon the genotype and treatment.



Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.



Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P &lt; 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.





2014 ◽  
Vol 7 (1) ◽  
pp. 19-33 ◽  
Author(s):  
D. Ruswandi ◽  
J. Supriatna ◽  
A.T. Makkulawu ◽  
B. Waluyo ◽  
H. Marta ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document