B and T-cell Epitopes Based Vaccine Design in Api m3 Allergen of Apis mellifera: An Immunoinformatics Approach

2017 ◽  
Vol 18 (1) ◽  
pp. 34-47
Author(s):  
Nayem Zobayer ◽  
Abul Bashar Mohammad Hossain
Peptides ◽  
1994 ◽  
pp. 732-733 ◽  
Author(s):  
A. M. DiGeorge ◽  
B. Wang ◽  
S. F. Kobs-Conrad ◽  
P. T. P. Kaumaya

3 Biotech ◽  
2014 ◽  
Vol 5 (4) ◽  
pp. 497-503 ◽  
Author(s):  
Amisha Jain ◽  
Pranav Tripathi ◽  
Aniket Shrotriya ◽  
Ritu Chaudhary ◽  
Ajeet Singh

2020 ◽  
Author(s):  
Parvez Slathia ◽  
Preeti Sharma,

<p>The world is currently battling the Covid-19 pandemic for which there is no therapy available. Prophylactic measures like vaccines can effectively thwart the disease burden. The current methods of detection are PCR based and require skilled manpower to operate. The availability of cheap and ready to use diagnostics like serological methods can ease the detection of SARS-CoV-2 virus. In the current study, immunoinformatics tools have been used to predict T and B cell epitopes present in all the proteins of this virus. NetMHCPan, NetCTL and NetMHCII servers were used for T cell epitope prediction while BepiPred and ABCPred were used for B cell epitope prediction. Population coverage analysis for T cell epitopes revealed that these could provide protection to the people throughout world. The T cell epitopes can exclusively used for vaccine design whereas B cell epitopes can be used for both vaccine design and developing diagnostic kits. </p> <p> </p>


2020 ◽  
Author(s):  
Parvez Slathia ◽  
Preeti Sharma,

<p>The world is currently battling the Covid-19 pandemic for which there is no therapy available. Prophylactic measures like vaccines can effectively thwart the disease burden. The current methods of detection are PCR based and require skilled manpower to operate. The availability of cheap and ready to use diagnostics like serological methods can ease the detection of SARS-CoV-2 virus. In the current study, immunoinformatics tools have been used to predict T and B cell epitopes present in all the proteins of this virus. NetMHCPan, NetCTL and NetMHCII servers were used for T cell epitope prediction while BepiPred and ABCPred were used for B cell epitope prediction. Population coverage analysis for T cell epitopes revealed that these could provide protection to the people throughout world. The T cell epitopes can exclusively used for vaccine design whereas B cell epitopes can be used for both vaccine design and developing diagnostic kits. </p> <p> </p>


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Saddam Hossain ◽  
Abul Kalam Azad ◽  
Parveen Afroz Chowdhury ◽  
Mamoru Wakayama

Tuberculosis (TB) is a reemerging disease that remains as a leading cause of morbidity and mortality in humans. To identify and characterize a T-cell epitope suitable for vaccine design, we have utilized the Vaxign server to assess all antigenic proteins ofMycobacteriumspp. recorded to date in the Protegen database. We found that the extracellular protein 85B displayed the most robust antigenicity among the proteins identified. Computational tools for identifying T-cell epitopes predicted an epitope, 181-QQFIYAGSLSALLDP-195, that could bind to at least 13 major histocompatibility complexes, revealing the promiscuous nature of the epitope. Molecular docking simulation demonstrated that the epitope could bind to the binding groove of MHC II and MHC I molecules by several hydrogen bonds. Molecular docking analysis further revealed that the epitope had a distinctive binding pattern to all DRB1 and A and B series of MHC molecules and presented almost no polymorphism in its binding site. Moreover, using “Allele Frequency Database,” we checked the frequency of HLA alleles in the worldwide population and found a higher frequency of both class I and II HLA alleles in individuals living in TB-endemic regions. Our results indicate that the identified peptide might be a universal candidate to produce an efficient epitope-based vaccine for TB.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Li Chuin Chong ◽  
Asif M. Khan

Abstract Background The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome. Methods All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon’s entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database. Results A total of 2321 nonamers met the HCSS selection criteria of entropy < 0.25 and MI > 0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity. Conclusion This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.


2021 ◽  
Vol 1 ◽  
Author(s):  
Jonathan Hare ◽  
David Morrison ◽  
Morten Nielsen

Predictive models for vaccine design have become a powerful and necessary resource for the expeditiousness design of vaccines to combat the ongoing SARS-CoV-2 global pandemic. Here we use the power of these predicted models to assess the sequence diversity of circulating SARS-CoV-2 proteomes in the context of an individual’s CD8 T-cell immune repertoire to identify potential. defined regions of immunogenicity. Using this approach of expedited and rational CD8 T-cell vaccine design, it may be possible to develop a therapeutic vaccine candidate with the potential for both global and local coverage.


2014 ◽  
Vol 193 (10) ◽  
pp. 4803-4813 ◽  
Author(s):  
Rieuwert Hoppes ◽  
Rimke Oostvogels ◽  
Jolien J. Luimstra ◽  
Kim Wals ◽  
Mireille Toebes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document