The Influence of Short-term Partial Shading on Photosynthesis and Stomatal Conductance in Different Leaf Position of Grapevines (Vitis vinifera L.)

1999 ◽  
Vol 3 (1) ◽  
pp. 136-141
Author(s):  
Ghulam Nabi ◽  
Micheal Trought ◽  
David Whitehead ◽  
Noor Rahman
2003 ◽  
Vol 30 (6) ◽  
pp. 673 ◽  
Author(s):  
Hans R. Schultz

Measurements of gas exchange and stomatal conductance were made on potted and field-grown grapevines (Vitis vinifera L.) on leaves from different light environments (sun and shade) at different phenological stages during the season to parameterise the Farquhar model. The model parameters for Rubisco activity (Vcmax), maximum electron transport rate (Jmax), and triose-phosphate utilisation (TPU) were estimated on the basis of a large data set (n = 105) of CO2 assimilation (A) versus internal CO2 pressure (Ci) curves. Leaf age was described with the leaf plastochron index (LPI). Stomatal coupling to photosynthesis was modelled with the Ball–Woodrow–Berry empirical model of stomatal conductance. Mature shade leaves had 35–40% lower values of Vcmax, Jmax and TPU than sun leaves. The difference between leaf types decreased at the end of the season. The ratio Jmax / Vcmax and values of day respiration (Rd) and CO2 compensation point in the absence of mitochondrial respiration (Γ*) varied little during the season and were independent of LPI. Validation of the model with independent diurnal data sets of measurements of gas exchange and stomatal conductance at ambient CO2 concentrations for three days between June and October, covering a large range of environmental conditions, showed good agreement between measured and simulated values.


2020 ◽  
Vol 47 (1) ◽  
pp. 11 ◽  
Author(s):  
Alexander D. Levin ◽  
Larry E. Williams ◽  
Mark A. Matthews

Vitis vinifera L. cultivars have been previously classified as isohydric, near-isohydric, anisohydric or isohydrodynamic, depending on the study. To test the hypothesis that V. vinifera cultivars’ stomatal behaviour can be separated into distinct classes, 17 cultivars grown in a replicated field trial were subjected to three irrigation treatments to manipulate vine water status across multiple years. Predawn (ΨPD) and midday (Ψl) leaf water potential and midday stomatal conductance (gs) were measured regularly throughout several seasons. The relationship of gs to Ψl was best modelled as a sigmoidal function and maximum stomatal conductance (gmax), water status at the onset of stomatal closure (Ψl95), sensitivity of closure (gsensitivity) and water status at the end of closure (Ψl25) were compared. There were no significant differences in gmax among cultivars. Cultivar-specific responses of gs to Ψl were broadly distributed along a continuum based on the relationship between Ψl95 and gsensitivity. Season-long cultivar mean Ψl values were positively related to Ψl25. In general, cultivars responded similarly to one another at high and low water status, but their stomatal behaviour differed at moderate water deficits. The results show that V. vinifera cultivars possess both iso- and anisohydric stomatal behaviours that depend on the intensity of water deficits, and call into question previous classifications assuming a single behaviour.


Sign in / Sign up

Export Citation Format

Share Document