aba synthesis
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 23 (2) ◽  
pp. 756
Author(s):  
Chengjie Xu ◽  
Mingzhao Luo ◽  
Xianjun Sun ◽  
Jiji Yan ◽  
Huawei Shi ◽  
...  

Salt stress is a major threat to crop quality and yield. Most experiments on salt stress-related genes have been conducted at the laboratory or greenhouse scale. Consequently, there is a lack of research demonstrating the merit of exploring these genes in field crops. Here, we found that the R2R3-MYB transcription factor SiMYB19 from foxtail millet is expressed mainly in the roots and is induced by various abiotic stressors such as salt, drought, low nitrogen, and abscisic acid. SiMYB19 is tentatively localized to the nucleus and activates transcription. It enhances salt tolerance in transgenic rice at the germination and seedling stages. SiMYB19 overexpression increased shoot height, grain yield, and salt tolerance in field- and salt pond-grown transgenic rice. SiMYB19 overexpression promotes abscisic acid (ABA) accumulation in transgenic rice and upregulates the ABA synthesis gene OsNCED3 and the ABA signal transduction pathway-related genes OsPK1 and OsABF2. Thus, SiMYB19 improves salt tolerance in transgenic rice by regulating ABA synthesis and signal transduction. Using rice heterologous expression analysis, the present study introduced a novel candidate gene for improving salt tolerance and increasing yield in crops grown in saline-alkali soil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhonghua Bian ◽  
Yu Wang ◽  
Xiaoyan Zhang ◽  
Steven Grundy ◽  
Katherine Hardy ◽  
...  

Light plays a pivotal role in plant growth, development, and stress responses. Green light has been reported to enhance plant drought tolerance via stomatal regulation. However, the mechanisms of green light-induced drought tolerance in plants remain elusive. To uncover those mechanisms, we investigated the molecular responses of tomato plants under monochromatic red, blue, and green light spectrum with drought and well-water conditions using a comparative transcriptomic approach. The results showed that compared with monochromatic red and blue light treated plants, green light alleviated the drought-induced inhibition of plant growth and photosynthetic capacity, and induced lower stomatal aperture and higher ABA accumulation in tomato leaves after 9 days of drought stress. A total of 3,850 differentially expressed genes (DEGs) was identified in tomato leaves through pairwise comparisons. Functional annotations revealed that those DEGs responses to green light under drought stress were enriched in plant hormone signal transduction, phototransduction, and calcium signaling pathway. The DEGs involved in ABA synthesis and ABA signal transduction both participated in the green light-induced drought tolerance of tomato plants. Compared with ABA signal transduction, more DEGs related to ABA synthesis were detected under different light spectral treatments. The bZIP transcription factor- HY5 was found to play a vital role in green light-induced drought responses. Furthermore, other transcription factors, including WRKY46 and WRKY81 might participate in the regulation of stomatal aperture and ABA accumulation under green light. Taken together, the results of this study might expand our understanding of green light-modulated tomato drought tolerance via regulating ABA accumulation and stomatal aperture.


2021 ◽  
pp. 1-16
Author(s):  
Chunhong Zhang ◽  
Yaqiong Wu ◽  
Zhenghao Xiong ◽  
Weilin Li ◽  
Wenlong Wu ◽  
...  

BACKGROUND: The softness of blackberry fruits limits their postharvest shelf-life and commercial use, and abscisic acid (ABA) is considered one of the key hormones involved in fruit ripening. OBJECTIVE: This study aimed to explore the underlying physiological and molecular actions of ABA on blackberry fruit ripening and softening. METHODS: Various physiological indices of and plant hormone levels in treated and untreated blackberry fruits were determined simultaneously. The differentially expressed genes (DEGs) were analyzed by RNA-sequencing, and their expression profiles were detected. The ripening mechanism was elucidated by UHPLC-MS using two groups of fruits at 28 d. RESULTS: After 25 d, the ABA concentration and polygalacturonase (PG) and beta-1,4-endoglucanase (EG) activities in ABA-treated fruits were significantly higher than those in untreated fruits. Large differences in the expression profiles were detected at 28 d. The expression of DEGs related to cell wall softening and ABA synthesis was largely triggered after 25 or 28 d. Sixty-nine differentially accumulated metabolites were ultimately annotated as related to fruit ripening. CONCLUSIONS: ABA stimulates blackberry fruit ripening by promoting cell wall enzyme activities, the expression of various ripening-related genes and metabolite accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chenyang Xue ◽  
Yingmei Gao ◽  
Bo Qu ◽  
Peidong Tai ◽  
Cheng Guo ◽  
...  

Hybridization is one of the important factors influencing the adaptive evolution of invasive plants. According to previous studies, hybridization with an invasive plant reduces the adaptability of its native congener to environment. However, in this study, the hybridization with an invasive plant of Xanthium strumarium (LT) improves the tolerance and accumulation of its native congener Xanthium sibiricum (CR) to cadmium (Cd). Under Cd stress, X. sibiricum♀ × X. strumarium♂ (ZCR) showed higher biomass and Cd accumulation. Compared with CR, ZCR has longer vegetative and reproductive growth time. Moreover, ZCR adopted more reasonable biomass allocation strategy. ZCR increased the proportion of reproductive allocation and ensured its own survival with the increase of Cd stress. Furthermore, ZCR increased the translocation of Cd to aboveground parts and changed the distribution of Cd. A large amount of Cd is stored in senescent leaves and eliminated from the plant when the leaves fall off, which not only reduces the Cd content in the plant, but also reduces the toxicity of Cd in the normal leaves. Transcriptome analysis shows a total of 2055 (1060 up and 995 down) differentially expressed genes (DEGs) were detected in the leaves of Cd-stressed ZCR compared with CR, while only 792 (521 up and 271 down) were detected in X. strumarium♀ × X. sibiricum♂ (ZLT) compared with LT. A large number of DGEs in ZCR and ZLT are involved in abscisic acid (ABA) synthesis and signal transduction. The genes induced by ABA in ZCR, including CNGC5/20, CPK1/28, CML, PTI1-like tyrosine-protein kinase 3, respiratory burst oxidase homolog protein C, and WRKY transcription factor 33 were found differentially expressed compared CR. carotenoid cleavage dioxygenase 4, NCED1/2, phytoene synthase 2, and CYP707A involved in ABA synthesis and decomposition in ZLT were found differentially expressed compared LT. We speculated that ABA played an important role in Cd transportation of hybrids and Cd distribution in senescent and normal leaves. The results demonstrate that hybridization with an invasive plant improves the adaptability of the hybrid to Cd stress and may enhance the extinction risk of native congener in pollution environment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246021
Author(s):  
QingHua Li ◽  
XianTao Yu ◽  
Long Chen ◽  
Gang Zhao ◽  
ShiZhou Li ◽  
...  

Abscisic acid (ABA) is an important plant hormone that plays multiple roles in regulating growth and development as well as in stress responses in plants. The NCED gene family includes key genes involved in the process of ABA synthesis. This gene family has been found in many species; however, the function of the NCED gene family in cotton is unclear. Here, a total of 23 NCED genes (designated as GhNCED1 to GhNCED23) were identified in cotton. Phylogenetic analysis indicated that the identified NCED proteins from cotton and Arabidopsis could be classified into 4 subgroups. Conserved motif analysis revealed that the gene structure and motif distribution of proteins within each subgroup were highly conserved. qRT-PCR and ABA content analyses indicated that NCED genes exhibited stage-specific expression patterns at tissue development stages. GhNCED5, GhNCED6 and GhNCED13 expression was similar to the change in ABA content, suggesting that this gene family plays a role in ABA synthesis. These results provide a better understanding of the potential functions of GhNCED genes.


ÈKOBIOTEH ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 41-49
Author(s):  
O.A. Seldimirova ◽  
◽  
I.R. Galin ◽  

The effect of the inhibitor of endogenous ABA synthesis fluridone on the content and distribution of endogenous ABA and IAA in the calli of ABA-deficient mutant AZ34 barley and its parental cultivar Steptoe was studied using the methods of immuno-enzymatic solid-phase assay and immunolocalization of phytohormones. It was found that by the 4th week of in vitro culture, fluridone causes a significant decrease in the ABA level in calli of both genotypes compared to the control, and the inhibitory effect of fluridone in AZ34 is more pronounced than in Steptoe. In the calli of both genotypes, a significant increase in the IAA content was revealed against the background of a decrease in the ABA content upon treatment with fluridone as compared to the control. It was concluded that ABA plays an important role in the process of embryoido-genesis in vitro.


2021 ◽  
Vol 27 ◽  
pp. 191-197
Author(s):  
Jing Zhang ◽  
Heng Zhou ◽  
Mingjian Zhou ◽  
Zhenglin Ge ◽  
Feng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document