Integrated Biological and Chemical Control of Powdery Mildew of Barley Caused by Blumeria graminis F.sp. Hordei Using Rhizobacteria and Triadimenol

2004 ◽  
Vol 7 (10) ◽  
pp. 1671-1675
Author(s):  
Fahri Yigit . ◽  
Ahmet Zeybek .
2011 ◽  
Vol 47 (No. 3) ◽  
pp. 95-100 ◽  
Author(s):  
A. Dreiseitl

  The resistance Heils Hanna (HH) was postulated in several tens of 471 previously tested winter barley cultivars. In this paper, new tests on 29 of these cultivars are reported. Thirty-two reference isolates of Blumeria graminis f.sp. hordei held in the pathogen genebank at the Agricultural Research Institute in Kromeriz, Ltd. including a Japanese isolate and five Israeli isolates were used for response tests. However, the resistance HH conferred by the gene Mla8 and herein characterised by reaction type 0 to an old Japanese isolate known as Race I was now postulated only in four cultivars. In the other 25 cultivars another resistance, characterised by reaction type 0 to Race I and also to two Israeli isolates, was detected. In addition to the two mentioned resistances, eight known (Bw, Dr2, Ha, IM9, Ln, Lv, Ra and Sp) resistances were found in the set examined. Lomerit was the only registered cultivar tested here in which the newly detected resistance was present alone, therefore, it is recommended that this resistance be designated Lo.


2000 ◽  
Vol 78 (10) ◽  
pp. 1288-1293 ◽  
Author(s):  
Jérôme Muchembled ◽  
Anissa Lounès-Hadj Sahraoui ◽  
Anne Grandmougin-Ferjani ◽  
Michel Sancholle

The total sterol composition of conidia of the obligate plant pathogen Blumeria (= Erysiphe) graminis f.sp. tritici has been analysed as a function of their ontogeny during sporulation. Two main classes of sterols were characterized: 24-ethylsterols (24-ethylcholesta-5,22-dienol, 24-ethylcholesterol, and Δ5-avenasterol) and 24-methylsterols (24-methylenecholesterol and episterol). Our results show that sterol composition is greatly modified during ontogeny of B. graminis conidia both at the qualitative and quantitative levels. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and episterol, are the major sterols in old conidia whereas 24-ethylsterols, e.g., 24-ethylcholesta-5,22-dienol, 24-ethylcholesterol, and Δ5-avenasterol, are the main sterols in young conidia.Key words: Erysiphe, wheat powdery mildew, sterols, ontogeny.


2020 ◽  
Vol 110 (2) ◽  
pp. 440-446 ◽  
Author(s):  
Yueqiang Leng ◽  
Mingxia Zhao ◽  
Jason Fiedler ◽  
Antonín Dreiseitl ◽  
Shiaoman Chao ◽  
...  

Spot blotch (SB) caused by Bipolaris sorokiniana and powdery mildew (PM) caused by Blumeria graminis f. sp. hordei are two important diseases of barley. To map genetic loci controlling susceptibility and resistance to these diseases, a mapping population consisting of 138 recombinant inbred lines (RILs) was developed from the cross between Bowman and ND5883. A genetic map was constructed for the population with 852 unique single nucleotide polymorphism markers generated by sequencing-based genotyping. Bowman and ND5883 showed distinct infection responses at the seedling stage to two isolates (ND90Pr and ND85F) of Bipolaris sorokiniana and one isolate (Race I) of Blumeria graminis f. sp. hordei. Genetic analysis of the RILs revealed that one major gene (Scs6) controls susceptibility to Bipolaris sorokiniana isolate ND90Pr, and another major gene (Mla8) confers resistance to Blumeria graminis f. sp. hordei isolate Race I, respectively. Scs6 was mapped on chromosome 1H of Bowman, as previously reported. Mla8 was also mapped to the short arm of 1H, which was tightly linked but not allelic to the Rcs6/Scs6 locus. Quantitative trait locus (QTL) analysis identified two QTLs, QSbs-1H-P1 and QSbs-7H-P1, responsible for susceptibility to spot blotch caused by Bipolaris sorokiniana isolate ND85F in ND5883, which are located on chromosome 1H and 7H, respectively. QSbs-7H-P1 was mapped to the same region as Rcs5, whereas QSbs-1H-P1 may represent a novel allele conferring seedling stage susceptibility to isolate ND85F. Identification and molecular mapping of the loci for SB susceptibility and PM resistance will facilitate development of barley cultivars with resistance to the diseases.


2020 ◽  
Author(s):  
Xian Xin Wu ◽  
Yue Gao ◽  
Qiang Bian ◽  
Qian Sun ◽  
Xin Yu Ni ◽  
...  

Abstract Background: Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici ( Bgt ), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and alos in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3 , Pm8 , Pm13 , Pm16 , and Pm21 in these cultivars using gene specific DNA markers. Results: Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3 , 18 likely to have Pm8 , 5 likely to have Pm16 , and 3 likely to have Pm21 . No cultivar was found to carry Pm13 . Conclusion: The information on the presence of the Pm resistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21 , which is effective against all Bgt races in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew. Keywords: Blumeria graminis f. sp. tritici , Pm gene, molecular markers, wheat


Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1219-1219 ◽  
Author(s):  
C. Cowger ◽  
R. Parks ◽  
D. Marshall

Pm17 is a gene for resistance to powdery mildew caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici. The gene was first confirmed in the wheat-rye translocation cultivar Amigo (1). In Amigo, the translocation is T1AL-1RS and the 1RS arm has the gene Pm17. In the mid-Atlantic United States, at least two widely deployed soft red winter wheat (Triticum aestivum L.) cultivars, McCormick (2) and Tribute (3), possess Pm17 inherited from Amigo. Before 2009, low frequencies of mostly intermediate virulence to Pm17 were detected among isolates from research plots of highly susceptible cultivars (4), but Pm17-bearing cultivars remained immune to mildew in the field. In April 2009, moderately severe powdery mildew was observed for the first time throughout plots of McCormick, Tribute, and other cultivars in both Kinston and Raleigh, NC. At Kinston, Pm17 virulence was observed at two research sites, separated by approximately 10 km, throughout plots of Amigo, McCormick, Tribute, and the hard red winter wheat cultivar TAM 303, which also contains Pm17. In the same month, virulence to Pm17 was observed in Raleigh throughout rows and plots of Amigo and TAM 303. In Kinston and Raleigh, ratings of powdery mildew severity on the Pm17-containing cultivars were 4 or 5 on a scale of 0 to 9, with 0 being the absence of mildew pustules and 9 the most severe mildew infection. Mildew was observed on leaves of all ages. Mildewed leaves were collected from field plots of all four Pm17-bearing cultivars, and an assay to confirm Pm17 virulence was conducted in the laboratory. Mixed-isolate cultures were derived from the leaves and a detached-leaf assay was performed using Amigo, which is the standard Pm17 differential (4). All tested cultures were fully to moderately virulent on Pm17 and all were fully virulent on the susceptible control Chancellor. In the field, chasmothecia (sexual fruiting bodies) were observed on Pm17-bearing cultivars. Together with the quantitatively varying Pm17 virulence detected in the laboratory assay, this suggests that multiple strains of Pm17-virulent B. graminis f. sp. tritici may be present in the field, although that has not yet been demonstrated. Pm17 has protected wheat from powdery mildew over a substantial area in the mid-Atlantic United States. The loss of Pm17 is the most important virulence shift in the U.S. wheat powdery mildew population since Pm4a became ineffective around 2002. Isolates virulent to Pm17 can be expected to appear and multiply in wheat-producing states of the mid-Atlantic United States, including Delaware, Maryland, Virginia, North Carolina, South Carolina, and Georgia. Thus, the urgency of developing and releasing wheat cultivars with other sources of effective mildew resistance is heightened. References: (1) B. Friebe et al. Euphytica 91:59, 1996. (2) C. A. Griffey et al. Crop Sci. 45:416, 2005. (3) C. A. Griffey et al. Crop Sci. 45:419, 2005. (4) R. Parks et al. Plant Dis. 92:1074, 2008.


2017 ◽  
Vol 111 ◽  
pp. 234-243 ◽  
Author(s):  
Jie Li ◽  
Xiwen Yang ◽  
Xinhao Liu ◽  
Haibo Yu ◽  
Congyang Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document