scholarly journals Homoclinic orbits and chaos in the generalized Lorenz system

2020 ◽  
Vol 25 (3) ◽  
pp. 1097-1108 ◽  
Author(s):  
Ting Yang ◽  
2019 ◽  
Vol 29 (14) ◽  
pp. 1930042
Author(s):  
Anna Wawrzaszek ◽  
Agata Krasińska

In the present study, we analyze the dynamics of a four-dimensional generalized Lorenz system with one variable describing the profile of the magnetic field induced in a convected magnetized fluid. In particular, we identify the subcritical Hopf bifurcation, at which the dimension of the unstable manifold is increased or reduced by two. Moreover, the new four-dimensional system behavior depending on the control parameters is considered and bidirectional bifurcation structures are revealed. The results show the existence of several windows of nonchaotic variation (windows of order), in particular period-3 windows at the edge of which type I intermittency is observed.


2014 ◽  
Vol 138 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Antonio Algaba ◽  
Fernando Fernández-Sánchez ◽  
Manuel Merino ◽  
Alejandro J. Rodríguez-Luis

2002 ◽  
Vol 12 (08) ◽  
pp. 1789-1812 ◽  
Author(s):  
SERGEJ ČELIKOVSKÝ ◽  
GUANRONG CHEN

This paper shows that a large class of systems, introduced in [Čelikovský & Vaněček, 1994; Vaněček & Čelikovský, 1996] as the so-called generalized Lorenz system, are state-equivalent to a special canonical form that covers a broader class of chaotic systems. This canonical form, called generalized Lorenz canonical form hereafter, generalizes the one introduced and analyzed in [Čelikovský & Vaněček, 1994; Vaněček & Čelikovský, 1996], and also covers the so-called Chen system, recently introduced in [Chen & Ueta, 1999; Ueta & Chen, 2000].Thus, this new generalized Lorenz canonical form contains as special cases the original Lorenz system, the generalized Lorenz system, and the Chen system, so that a comparison of the structures between two essential types of chaotic systems becomes possible. The most important property of the new canonical form is the parametrization that has precisely a single scalar parameter useful for chaos tuning, which has promising potential in future engineering chaos design. Some other closely related topics are also studied and discussed in the paper.


Complexity ◽  
2015 ◽  
Vol 21 (S1) ◽  
pp. 99-105 ◽  
Author(s):  
Fuchen Zhang ◽  
Xiaofeng Liao ◽  
Guangyun Zhang

2016 ◽  
Vol 26 (08) ◽  
pp. 1650140 ◽  
Author(s):  
Sergej Čelikovský ◽  
Volodymyr Lynnyk

This paper focuses on the design of the novel chaotic masking scheme via message embedded synchronization. A general class of the systems allowing the message embedded synchronization is presented here, moreover, it is shown that the generalized Lorenz system belongs to this class. Furthermore, the secure encryption scheme based on the message embedded synchronization is proposed. This scheme injects the embedded message into the dynamics of the transmitter as well, ensuring thereby synchronization with theoretically zero synchronization error. To ensure the security, the embedded message is a sum of the message and arbitrary bounded function of the internal transmitter states that is independent of the scalar synchronization signal. The hexadecimal alphabet will be used to form a ciphertext making chaotic dynamics of the transmitter even more complicated in comparison with the transmitter influenced just by the binary step-like function. All mentioned results and their security are tested and demonstrated by numerical experiments.


2006 ◽  
Vol 16 (10) ◽  
pp. 2855-2871 ◽  
Author(s):  
QIGUI YANG ◽  
GUANGRONG CHEN ◽  
TIANSHOU ZHOU

Based on the generalized Lorenz system, a conjugate Lorenz-type system is introduced, and a new unified Lorenz-type system containing these two classes of systems is naturally constructed in the paper. Such a unified system is state-equivalent to a simple special form, which is parameterized by two parameters useful for chaos turning and system classification. More importantly, based on the parameterized form, three new chaotic attractors, called conjugate attractors, are found for the first time, which are conjugate to the Lorenz attractor, the Chen attractor, and the Lü attractor, respectively.


Sign in / Sign up

Export Citation Format

Share Document