scholarly journals Can synoptic patterns influence the track and formation of tropical cyclones in the Mozambique Channel?

2022 ◽  
Vol 8 (1) ◽  
pp. 33-51
Author(s):  
Chibuike Chiedozie Ibebuchi ◽  

<abstract> <p>The influence of large-scale circulation patterns on the track and formation of tropical cyclones (TCs) in the Mozambique Channel is investigated in this paper. The output of the hourly classification of circulation types (CTs), in Africa, south of the equator, using rotated principal component analysis on the T-mode matrix (variable is time series and observation is grid points) of sea level pressure (SLP) from ERA5 reanalysis from 2010 to 2019 was used to investigate the time development of the CTs at a sub-daily scale. The result showed that at specific seasons, certain CTs are dominant so that their features overlap with other CTs. CTs with synoptic features, such as enhanced precipitable water and cyclonic activity in the Mozambique Channel that can be favorable for the development of TC in the Channel were noted. The 2019 TC season in the Mozambique Channel characterized by TC Idai in March and TC Kenneth afterward in April were used in evaluating how the CTs designated to have TC characteristics played role in the formation and track of the TCs towards their maximum intensity. The results were discussed and it generally showed that large-scale circulation patterns can influence the formation and track of the TCs in the Mozambique Channel especially through (ⅰ) variations in the position and strength of the anticyclonic circulation at the western branch of the Mascarene high; (ⅱ) modulation of wind speed and wind direction; hence influencing convergence in the Channel; (ⅲ) and modulation of the intensity of cyclonic activity in the Channel that can influence large-scale convection.</p> </abstract>

2021 ◽  
Author(s):  
Chibuike Chiedozie Ibebuchi

Abstract The influence of large-scale circulation patterns on the track and formation of tropical cyclones (TCs) in the Mozambique Channel is investigated in this paper. The output of the hourly classification of circulation types (CTs), in Africa, south of the equator, using rotated principal component analysis on the T-mode matrix (variable is time series and observation is grid points) of sea level pressure (SLP) from ERA5 reanalysis from 2010 to 2019 was used to investigate the time development of the CTs at a sub-daily scale. The result showed that at specific seasons, certain CTs can persist for a longer time so that their features overlap with other CTs. CTs with synoptic features favorable for the development of TC in the Mozambique Channel were noted. The 2019 TC season in the Mozambique Channel characterized by TC Idai in March and TC Kenneth afterward in April was used in evaluating how the CTs designated to have TC characteristics played role in the formation and track of the TCs towards their maximum intensity. The results were discussed and it generally showed that large-scale circulation patterns might influence the formation and track of the TCs in the Mozambique Channel especially through the different modes of variability associated with the western branch of the Mascarene high.


2017 ◽  
Vol 102 ◽  
pp. 214-223 ◽  
Author(s):  
J.M. Correia ◽  
A. Bastos ◽  
M.C. Brito ◽  
R.M. Trigo

2020 ◽  
Vol 212 ◽  
pp. 103456
Author(s):  
Kirstin Schulz ◽  
Karline Soetaert ◽  
Christian Mohn ◽  
Laura Korte ◽  
Furu Mienis ◽  
...  

2020 ◽  
Vol 35 (2) ◽  
pp. 367-377
Author(s):  
Hyun-Ju Lee ◽  
Woo-Seop Lee ◽  
Jong Ahn Chun ◽  
Hwa Woon Lee

Abstract Forecasting extreme events is important for having more time to prepare and mitigate high-impact events because those are expected to become more frequent, intense, and persistent around the globe in the future under the warming atmosphere. This study evaluates the probabilistic predictability of the heat wave index (HWI) associated with large-scale circulation patterns for predicting heat waves over South Korea. The HWI, reflecting heat waves over South Korea, was defined as the vorticity difference at 200 hPa between the South China Sea and northeast Asia. The forecast of up to 15 days from five ensemble prediction systems and the multimodel ensemble has been used to predict the probabilistic HWI during the summers of 2011–15. The ensemble prediction systems consist of different five operational centers, and the forecast skill of the probability of heat waves occurrence was assessed using the Brier skill score (BSS), relative operating characteristics (ROC), and reliability diagram. It was found that the multimodel ensemble is capable of better predicting the large-scale circulation patterns leading to heat waves over South Korea than any other single ensemble system through all forecast lead times. We concluded that the probabilistic forecast of the HWI has promise as a tool to take appropriate and timely actions to minimize the loss of lives and properties from imminent heat waves.


2011 ◽  
Vol 38 (1-2) ◽  
pp. 121-140 ◽  
Author(s):  
Jhan Carlo Espinoza ◽  
Matthieu Lengaigne ◽  
Josyane Ronchail ◽  
Serge Janicot

2020 ◽  
Author(s):  
M. Carmen Alvarez-Castro ◽  
Silvio Gualdi ◽  
Pascal Yiou ◽  
Mathieu Vrac ◽  
Robert Vautard ◽  
...  

&lt;p&gt;Windstorms, extreme precipitations and instant floods seems to strike the Mediterranean area with increasing frequency. These events occur simultaneously during intense tropical-like Mediterranean cyclones. These intense Mediterranean cyclones are frequently associated with wind, heavy precipitation and changes in temperature, generating high risk situations such as flash floods and large-scale floods with significant impacts on human life and built environment. Although the dynamics of these phenomena is well understood, little is know about their climatology. It is therefore very difficult to make statements about the frequency of occurrence and its response to climate change. Thus, intense Mediterranean cyclones have many different physical aspects that can not be captured by a simple standard approach.&amp;#160;&lt;/p&gt;&lt;p&gt;The first challenge of this work is to provide an extended catalogue and climatology of these phenomena by reconstructing a database of intense Mediterranean cyclones dating back up to 1969 using the satellite, the literature and reanalyses. Applying a method based on dynamical systems theory we analyse and attribute their future changes under different anthropogenic forcings by using future simulations within CMIP framework. Preliminary results show a decrease of the large-scale circulation patterns favoring intense Mediterranean cyclones in all the seasons except summer.&lt;/p&gt;


2020 ◽  
Author(s):  
James Risbey ◽  
Didier Monselesan

&lt;p&gt;Archetypal analysis of Southern Hemisphere extreme circulation events&lt;/p&gt;&lt;p&gt;This work conducts an archetypal analysis (AA) of midtropospheric flow&lt;br&gt;in the Southern Hemisphere. &amp;#160;The analysis identifies the archetypical&lt;br&gt;extreme flow states and compares them with the leading modes of&lt;br&gt;variability from Principal Component Analysis (PCA) methods. &amp;#160;In&lt;br&gt;particular, we examine long-lived extreme circulation patterns and&lt;br&gt;events from both AA and PCA, together with their synoptic signatures&lt;br&gt;and surface impacts. &amp;#160;The long-lived circulation types are efficient at&lt;br&gt;generating surface temperature extremes and exhibit long period&lt;br&gt;variability. &amp;#160;Case studies of documented surface extreme events show&lt;br&gt;that they correspond clearly to the midtropospheric flow archetypes.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2013 ◽  
Vol 9 (4) ◽  
pp. 3825-3870
Author(s):  
N. Merz ◽  
C. C. Raible ◽  
H. Fischer ◽  
V. Varma ◽  
M. Prange ◽  
...  

Abstract. Accumulation and aerosol chemistry records from Greenland ice cores offer the potential to reconstruct variability in Northern Hemisphere atmospheric circulation over the last millennia. However, an important prerequisite for a reconstruction is the stable relationship between local accumulation at the ice core site with the respective circulation pattern throughout the reconstruction period. We address this stability issue by using a comprehensive climate model and performing time-slice simulations for the present, the pre-industrial, the early Holocene and the last glacial maximum (LGM). The relationships between accumulation, precipitation and atmospheric circulation are investigated on on various time-scales. The analysis shows that the relationship between local accumulation on the Greenland ice sheet and the large-scale circulation undergoes a significant seasonal cycle. As the weights of the individual seasons change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM, however these circulation patterns are specific for different regions on the Greenland ice sheet. The simulated impact of orbital forcing and changes in the ice-sheet topography on accumulation exhibits strong spatial variability emphasizing that accumulation records from different ice core sites cannot be expected to look alike since they include a distinct local signature. Accumulation changes between different climate periods are dominated by changes in the amount of snowfall and are driven by both thermodynamic and dynamic factors. The thermodynamic impact determines the strength of the hydrological cycle, and warmer temperatures are generally accompanied by an increase in Greenland precipitation. Dynamical drivers of accumulation changes are the large-scale circulation and the local orography having a distinct influence on the local flow characteristic and hence the amount of precipitation deposited in any Greenland region.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karthik Balaguru ◽  
L. Ruby Leung ◽  
Samson M. Hagos ◽  
Sujith Krishnakumar

AbstractWhile the Madden–Julian Oscillation (MJO) has been shown to affect tropical cyclones (TCs) worldwide through its modulation of large-scale circulation in the atmosphere, little or no role for the ocean has been identified to date in this influence of MJO on TCs. Using observations and numerical model simulations, we demonstrate that MJO events substantially impact TCs over the Maritime Continent (MC) region through an oceanic pathway. While propagating across the MC region, MJO events cause significant sea surface cooling with an area-averaged value of about 0.35 ± 0.12 °C. Hence, TCs over the MC region immediately following the passage of MJO events encounter considerably cooler sea surface temperatures. Consequently, the enthalpy fluxes under the storms are reduced and the intensification rates decrease by more than 50% on average. These results highlight an important role played by the ocean in facilitating MJO-induced sub-seasonal variability in TC activity over the MC region.


Sign in / Sign up

Export Citation Format

Share Document