scholarly journals Long-time behaviors of two stochastic mussel-algae models

2021 ◽  
Vol 18 (6) ◽  
pp. 8392-8414
Author(s):  
Dengxia Zhou ◽  
◽  
Meng Liu ◽  
Ke Qi ◽  
Zhijun Liu ◽  
...  

<abstract><p>In this paper, we develop two stochastic mussel-algae models: one is autonomous and the other is periodic. For the autonomous model, we provide sufficient conditions for the extinction, nonpersistent in the mean and weak persistence, and demonstrate that the model possesses a unique ergodic stationary distribution by constructing some suitable Lyapunov functions. For the periodic model, we testify that it has a periodic solution. The theoretical findings are also applied to practice to dissect the effects of environmental perturbations on the growth of mussel.</p></abstract>

2019 ◽  
Vol 12 (06) ◽  
pp. 1950063 ◽  
Author(s):  
Miaomiao Gao ◽  
Daqing Jiang ◽  
Tasawar Hayat

In this paper, we consider two chemostat models with random perturbation, in which single species depends on two perfectly substitutable resources for growth. For the autonomous system, we first prove that the solution of the system is positive and global. Then we establish sufficient conditions for the existence of an ergodic stationary distribution by constructing appropriate Lyapunov functions. For the non-autonomous system, by using Has’minskii theory on periodic Markov processes, we derive it admits a nontrivial positive periodic solution. Finally, numerical simulations are carried out to illustrate our main results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750022 ◽  
Author(s):  
Qimin Zhang ◽  
Xinjing Zhang ◽  
Hongfu Yang

In this paper, a class of stochastic Lotka–Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructing suitable Lyapunov functions as well as combining with Jensen inequality and It[Formula: see text] formula, the sufficient conditions are established and they are expressed in terms of the feasibility to a couple linear matrix inequalities (LMIs). Finally, the main results are illustrated by examples.


2007 ◽  
Vol 17 (01) ◽  
pp. 35-42 ◽  
Author(s):  
YONGHUI XIA ◽  
JINDE CAO ◽  
MUREN LIN

Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of a class of impulsive tow-neuron networks with variable and unbounded delays. The approaches are based on Mawhin's continuation theorem of coincidence degree theory and Lyapunov functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Jian Chen ◽  
Bingyu Li

We study the necessary and sufficient conditions on the masses for the periodic solution of planar 4-body problems, where three particles locate at the vertices of an equilateral triangle and rotate with constant angular velocity about a resting particle. We prove that the above periodic motion is a solution of Newtonian 4-body problems if and only if the resting particle is at the origin and the masses of the other three particles are equal and their angular velocity satisfies a special condition.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Miaomiao Gao ◽  
Daqing Jiang ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

<p style='text-indent:20px;'>This paper focuses on the spread dynamics of an HIV/AIDS model with multiple stages of infection and treatment, which is disturbed by both white noise and telegraph noise. Switching between different environmental states is governed by Markov chain. Firstly, we prove the existence and uniqueness of the global positive solution. Then we investigate the existence of a unique ergodic stationary distribution by constructing suitable Lyapunov functions with regime switching. Furthermore, sufficient conditions for extinction of the disease are derived. The conditions presented for the existence of stationary distribution improve and generalize the previous results. Finally, numerical examples are given to illustrate our theoretical results.</p>


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 331 ◽  
Author(s):  
Peng Liu ◽  
Xinzhu Meng ◽  
Haokun Qi

In this paper, a stochastic model with relapse and temporary immunity is formulated. The main purpose of this model is to investigate the stochastic properties. For two incidence rate terms, we apply the ideas of a symmetric method to obtain the results. First, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the extinction and persistence of this system. Then, we investigate the existence of a stationary distribution for this model by employing the theory of an integral Markov semigroup. Finally, the numerical examples are presented to illustrate the analytical findings.


Author(s):  
Miaomiao Gao ◽  
Daqing Jiang ◽  
Xiangdan Wen

In this paper, we study the dynamical behavior of a stochastic two-compartment model of [Formula: see text]-cell chronic lymphocytic leukemia, which is perturbed by white noise. Firstly, by constructing suitable Lyapunov functions, we establish sufficient conditions for the existence of a unique ergodic stationary distribution. Then, conditions for extinction of the disease are derived. Furthermore, numerical simulations are presented for supporting the theoretical results. Our results show that large noise intensity may contribute to extinction of the disease.


2021 ◽  
Vol 71 (1) ◽  
pp. 235-250
Author(s):  
Xin He ◽  
Xin Zhao ◽  
Tao Feng ◽  
Zhipeng Qiu

Abstract In this paper, a stochastic prey-predator model is investigated and analyzed, which possesses foraging arena scheme in polluted environments. Sufficient conditions are established for the extinction and persistence in the mean. These conditions provide a threshold that determines the persistence in the mean and extinction of species. Furthermore, it is also shown that the stochastic system has a periodic solution under appropriate conditions. Finally, several numerical examples are carried on to demonstrate the analytical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jinxing Zhao ◽  
Yuanfu Shao

Considering the environmental effects, a Holling–Leslie predator-prey system with impulsive and stochastic disturbance is proposed in this paper. Firstly, we prove that existence of periodic solution, the mean time boundness of variables is found by integral inequality, and we establish some sufficient conditions assuring the existencle of periodic Markovian process. Secondly, for periodic impulsive differential equation and system, it is different from previous research methods, by defining three restrictive conditions, we study the extinction and permanence in the mean of all species. Thirdly, by stochastic analysis method, we investigate the stochastic permanence of the system. Finally, some numerical simulations are given to illustrate the main results.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3277
Author(s):  
Fangju Jia ◽  
Chunzheng Cao

We study the rumor propagation model with regime switching considering both colored and white noises. Firstly, by constructing suitable Lyapunov functions, the sufficient conditions for ergodic stationary distribution and extinction are obtained. Then we obtain the threshold Rs which guarantees the extinction and the existence of the stationary distribution of the rumor. Finally, numerical simulations are performed to verify our model. The results indicated that there is a unique ergodic stationary distribution when Rs>1. The rumor becomes extinct exponentially with probability one when Rs<1.


Sign in / Sign up

Export Citation Format

Share Document