scholarly journals The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes

2022 ◽  
Vol 19 (3) ◽  
pp. 2330-2354
Author(s):  
M. Nagy ◽  
◽  
Adel Fahad Alrasheedi

<abstract><p>In this study, we estimate the unknown parameters, reliability, and hazard functions using a generalized Type-I progressive hybrid censoring sample from a Weibull distribution. Maximum likelihood (ML) and Bayesian estimates are calculated using a choice of prior distributions and loss functions, including squared error, general entropy, and LINEX. Unobserved failure point and interval Bayesian predictions, as well as a future progressive censored sample, are also developed. Finally, we run some simulation tests for the Bayesian approach and numerical example on real data sets using the MCMC algorithm.</p></abstract>

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 934
Author(s):  
Yuxuan Zhang ◽  
Kaiwei Liu ◽  
Wenhao Gui

For the purpose of improving the statistical efficiency of estimators in life-testing experiments, generalized Type-I hybrid censoring has lately been implemented by guaranteeing that experiments only terminate after a certain number of failures appear. With the wide applications of bathtub-shaped distribution in engineering areas and the recently introduced generalized Type-I hybrid censoring scheme, considering that there is no work coalescing this certain type of censoring model with a bathtub-shaped distribution, we consider the parameter inference under generalized Type-I hybrid censoring. First, estimations of the unknown scale parameter and the reliability function are obtained under the Bayesian method based on LINEX and squared error loss functions with a conjugate gamma prior. The comparison of estimations under the E-Bayesian method for different prior distributions and loss functions is analyzed. Additionally, Bayesian and E-Bayesian estimations with two unknown parameters are introduced. Furthermore, to verify the robustness of the estimations above, the Monte Carlo method is introduced for the simulation study. Finally, the application of the discussed inference in practice is illustrated by analyzing a real data set.


2021 ◽  
Vol 10 (1) ◽  
pp. 4-22
Author(s):  
Gyan Prakash

Our main focus on combining two different approaches, Step-Stress Partially Accelerated Life Test and Type-I Progressive Hybrid censoring criteria in the present article. The fruitfulness of this combination has been investigated by bound lengths for unknown parameters of the Burr Type-XII distribution. Approximate confidence intervals, Bootstrap confidence intervals and One-Sample Bayes prediction bound lengths have been obtained under the above scenario. Particular cases of Type-I Progressive Hybrid censoring (Type-I and Progressive Type-II censoring) has also evaluated under SS-PALT. Optimal stress change time also measured by minimizing the asymptotic variance of ML Estimation. A simulation study based on Metropolis-Hastings algorithm have carried out along with a real data set example.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


2021 ◽  
Vol 9 (5) ◽  
pp. 533-548
Author(s):  
Song Mao ◽  
Bin Liu ◽  
Yimin Shi

Abstract This paper investigates a simple step-stress accelerated lifetime test (SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model (CEM). Then the conditional moment generating function (MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals (CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated (BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.


2021 ◽  
Vol 11 (13) ◽  
pp. 6000
Author(s):  
Khalaf S. Sultan ◽  
Walid Emam

In this paper, we use the combined-unified hybrid censoring samples to obtain the maximum likelihood estimates of the unknown parameters, survival, and hazard functions of Pareto distribution. Next, we discuss some efficiency criteria of the maximum likelihood estimators, including; the unbiasedness, consistency, and sufficiency. Additionally, we use MCMC to obtain the Bayesian estimates of the unknown parameters. In addition, we calculate the intervals estimation of the unknown parameters. Finally, we analyze a set of real data in view of the theoretical findings of the paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ali Algarni ◽  
Mohammed Elgarhy ◽  
Abdullah M Almarashi ◽  
Aisha Fayomi ◽  
Ahmed R El-Saeed

The challenge of estimating the parameters for the inverse Weibull (IW) distribution employing progressive censoring Type-I (PCTI) will be addressed in this study using Bayesian and non-Bayesian procedures. To address the issue of censoring time selection, qauntiles from the IW lifetime distribution will be implemented as censoring time points for PCTI. Focusing on the censoring schemes, maximum likelihood estimators (MLEs) and asymptotic confidence intervals (ACI) for unknown parameters are constructed. Under the squared error (SEr) loss function, Bayes estimates (BEs) and concomitant maximum posterior density credible interval estimations are also produced. The BEs are assessed using two methods: Lindley’s approximation (LiA) technique and the Metropolis-Hasting (MH) algorithm utilizing Markov Chain Monte Carlo (MCMC). The theoretical implications of MLEs and BEs for specified schemes of PCTI samples are shown via a simulation study to compare the performance of the different suggested estimators. Finally, application of two real data sets will be employed.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1219 ◽  
Author(s):  
Shuhan Liu ◽  
Wenhao Gui

As it is often unavoidable to obtain incomplete data in life testing and survival analysis, research on censoring data is becoming increasingly popular. In this paper, the problem of estimating the entropy of a two-parameter Lomax distribution based on generalized progressively hybrid censoring is considered. The maximum likelihood estimators of the unknown parameters are derived to estimate the entropy. Further, Bayesian estimates are computed under symmetric and asymmetric loss functions, including squared error, linex, and general entropy loss function. As we cannot obtain analytical Bayesian estimates directly, the Lindley method and the Tierney and Kadane method are applied. A simulation study is conducted and a real data set is analyzed for illustrative purposes.


2018 ◽  
Vol 20 (6) ◽  
pp. 2055-2065 ◽  
Author(s):  
Johannes Brägelmann ◽  
Justo Lorenzo Bermejo

Abstract Technological advances and reduced costs of high-density methylation arrays have led to an increasing number of association studies on the possible relationship between human disease and epigenetic variability. DNA samples from peripheral blood or other tissue types are analyzed in epigenome-wide association studies (EWAS) to detect methylation differences related to a particular phenotype. Since information on the cell-type composition of the sample is generally not available and methylation profiles are cell-type specific, statistical methods have been developed for adjustment of cell-type heterogeneity in EWAS. In this study we systematically compared five popular adjustment methods: the factored spectrally transformed linear mixed model (FaST-LMM-EWASher), the sparse principal component analysis algorithm ReFACTor, surrogate variable analysis (SVA), independent SVA (ISVA) and an optimized version of SVA (SmartSVA). We used real data and applied a multilayered simulation framework to assess the type I error rate, the statistical power and the quality of estimated methylation differences according to major study characteristics. While all five adjustment methods improved false-positive rates compared with unadjusted analyses, FaST-LMM-EWASher resulted in the lowest type I error rate at the expense of low statistical power. SVA efficiently corrected for cell-type heterogeneity in EWAS up to 200 cases and 200 controls, but did not control type I error rates in larger studies. Results based on real data sets confirmed simulation findings with the strongest control of type I error rates by FaST-LMM-EWASher and SmartSVA. Overall, ReFACTor, ISVA and SmartSVA showed the best comparable statistical power, quality of estimated methylation differences and runtime.


2021 ◽  
Vol 50 (5) ◽  
pp. 38-51
Author(s):  
Mohammad Kazemi ◽  
Mina Azizpoor

The hybrid censoring is a mixture of type-I and type-II censoring schemes. This paper presents the statistical inferences of the inverse Weibull distribution parameters when the data are type-I hybrid censored. First, we consider the maximum likelihood estimates of the unknown parameters. It is observed that the maximum likelihood estimates can not be obtained in closed form. We further obtain the Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters under the assumption of independent gamma priors using the importance sampling procedure. We also compute the approximate Bayes estimates using Lindley's approximation technique. The performance of the Bayes estimates have been compared with maximum likelihood estimates through the Monte Carlo Markov chain techniques. Finally, a real data set have been analysed for illustration purpose.


Sign in / Sign up

Export Citation Format

Share Document