scholarly journals In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota

2013 ◽  
Vol 97 (2) ◽  
pp. 295-309 ◽  
Author(s):  
Lisa M Bode ◽  
Diana Bunzel ◽  
Melanie Huch ◽  
Gyu-Sung Cho ◽  
Denise Ruhland ◽  
...  
2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Fei Li ◽  
Meredith AJ Hullar ◽  
Shirley AA Beresford ◽  
Johanna W Lampe

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2886 ◽  
Author(s):  
Huai-You Wang ◽  
Shu-Chen Guo ◽  
Zhi-Tian Peng ◽  
Cheng Wang ◽  
Ran Duan ◽  
...  

Gut microbiota play an important role in metabolism of intake saponins, and parallelly, the polysaccharides deriving from herbal products possess effects on gut microbiota. Ophiopogonis Radix is a common Chinese herb that is popularly used as functional food in China. Polysaccharide and steroidal saponin, e.g., ophiopogonin, mainly ophiopogonin D (Oph-D) and ophiopogonin D’ (Oph-D’), are the major constituents in this herb. In order to reveal the role of gut microbiota in metabolizing ophiopogonin, an in vitro metabolism of Oph-D and Oph-D’ by human gut microbiota, in combination with or without Ophiopogon polysaccharide, was conducted. A sensitive and reliable UPLC-MS/MS method was developed to simultaneously quantify Oph-D, Oph-D’ and their final metabolites, i.e., ruscogenin and diosgenin in the broth of microbiota. An elimination of Oph-D and Oph-D’ was revealed in a time-dependent manner, as well as the recognition of a parallel increase of ruscogenin and diosgenin. Ophiopogon polysaccharide was shown to stimulate the gut microbiota-induced metabolism of ophiopogonins. This promoting effect was further verified by increased activities of β-D-glucosidase, β-D-xylosidase, α-L-rhamnosidase and β-D-fucosidase in the broth. This study can be extended to investigate the metabolism of steroidal saponins by gut microbiota when combined with other herbal products, especially those herbs enriched with polysaccharides.


2018 ◽  
Vol 59 ◽  
pp. 160-172 ◽  
Author(s):  
Alba C. Mayta-Apaza ◽  
Ellen Pottgen ◽  
Jana De Bodt ◽  
Nora Papp ◽  
Daya Marasini ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1340
Author(s):  
Olga V. Averina ◽  
Elena U. Poluektova ◽  
Mariya V. Marsova ◽  
Valery N. Danilenko

Lactobacilli and bifidobacteria are an important part of human gut microbiota. Among numerous benefits, their antioxidant properties are attracting more and more attention. Multiple in vivo and in vitro studies have demonstrated that lactobacilli and bifidobacteria, along with their cellular components, possess excellent antioxidant capacity, which provides a certain degree of protection to the human body against diseases associated with oxidative stress. Recently, lactobacilli and bifidobacteria have begun to be considered as a new source of natural antioxidants. This review summarizes the current state of research on various antioxidant properties of lactobacilli and bifidobacteria. Special emphasis is given to the mechanisms of antioxidant activity of these bacteria in the human gut microbiota, which involve bacterial cell components and metabolites. This review is also dedicated to the genes involved in the antioxidant properties of lactobacilli and bifidobacteria strains as indicators of their antioxidant potential in human gut microbiota. Identification of the antioxidant biomarkers of the gut microbiota is of great importance both for creating diagnostic systems for assessing oxidative stress and for choosing strategies aimed at restoring the normal functioning of the microbiota and, through it, restoring human health. In this review, the practical application of probiotic strains with proven antioxidant properties to prevent oxidative stress is also considered.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Jovana Mihajlovic ◽  
Nathalie Bechon ◽  
Christa Ivanova ◽  
Florian Chain ◽  
Alexandre Almeida ◽  
...  

ABSTRACTBacteroides thetaiotaomicronis a prominent anaerobic member of the healthy human gut microbiota. While the majority of functional studies onB. thetaiotaomicronaddressed its impact on the immune system and the utilization of diet polysaccharides,B. thetaiotaomicronbiofilm capacity and its contribution to intestinal colonization are still poorly characterized. We tested the natural adhesion of 34B. thetaiotaomicronisolates and showed that although biofilm capacity is widespread amongB. thetaiotaomicronstrains, this phenotype is masked or repressed in the widely used reference strain VPI 5482. Using transposon mutagenesis followed by a biofilm positive-selection procedure, we identified VPI 5482 mutants with increased biofilm capacity corresponding to an alteration in the C-terminal region of BT3147, encoded by theBT3148-BT3147locus, which displays homology with Mfa-like type V pili found in manyBacteroidetes. We show that BT3147 is exposed on theB. thetaiotaomicronsurface and that BT3147-dependent adhesion also requires BT3148, suggesting that BT3148 and BT3147 correspond to the anchor and stalk subunits of a new type V pilus involved inB. thetaiotaomicronadhesion. This study therefore introducesB. thetaiotaomicronas a model to study proteinaceous adhesins and biofilm-related phenotypes in this important intestinal symbiont.IMPORTANCEAlthough the gut anaerobeBacteroides thetaiotaomicronis a prominent member of the healthy human gut microbiota, little is known about its capacity to adhere to surfaces and form biofilms. Here, we identify that alteration of a surface-exposed protein corresponding to a type of pili found in manyBacteroidetesincreasesB. thetaiotaomicronbiofilm formation. This study lays the ground for establishing this bacterium as a model organism forin vitroandin vivostudies of biofilm-related phenotypes in gut anaerobes.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

2017 ◽  
Author(s):  
EM Pferschy-Wenzig ◽  
A Roßmann ◽  
K Koskinen ◽  
H Abdel-Aziz ◽  
C Moissl-Eichinger ◽  
...  

2021 ◽  
pp. 130228
Author(s):  
Seung Yun Lee ◽  
Da Young Lee ◽  
Hea Jin Kang ◽  
Ji Hyeop Kang ◽  
Hae Won Jang ◽  
...  

2021 ◽  
pp. 2100029
Author(s):  
Zhonglin Zhao ◽  
Wei Liu ◽  
Xionge Pi

Sign in / Sign up

Export Citation Format

Share Document