scholarly journals Medium-Chain and Long-Chain Fatty Acids Have Different Postabsorptive Fates in Atlantic Salmon

2011 ◽  
Vol 141 (9) ◽  
pp. 1618-1628 ◽  
Author(s):  
Vegard Denstadli ◽  
Anne Marie Bakke ◽  
Gerd Marit Berge ◽  
Åshild Krogdahl ◽  
Marie Hillestad ◽  
...  
2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 682-682 ◽  
Author(s):  
Kayla Dillard ◽  
Morgan Coffin ◽  
Gabriella Hernandez ◽  
Victoria Smith ◽  
Catherine Johnson ◽  
...  

Abstract Objectives Non-alcoholic fatty liver disease (NAFLD) represents the major cause of pediatric chronic liver pathology in the United States. The objective of this study was to compare the relative effect of inclusion of isocaloric amounts of saturated medium-chain fatty acids (hydrogenated coconut oil), saturated long-chain fatty acids (lard) and unsaturated long-chain fatty acids (olive oil) on endpoints of NAFLD and insulin resistance. Methods Thirty-eight 15-d-old Iberian pigs were fed 1 of 4 diets containing (g/kg body weight × d) 1) control (CON; n = 8): 0 g fructose, 10.5 g fat, and 187 kcal metabolizable energy (ME), 2) lard (LAR; n = 10): 21.6 g fructose, 17.1 g fat (100% lard) and 299 kcal ME, 3) hydrogenated coconut oil (COCO; n = 10): 21.6 g fructose, 16.9 g fat (42.5% lard and 57.5% coconut oil) and 299 kcal ME, and 4) olive oil (OLV, n = 10): 21.6 g fructose, 17.1 g fat (43.5% lard and 56.5% olive oil) and 299 kcal ME, for 9 consecutive weeks. Body weight was recorded every 3 d. Serum markers of liver injury and dyslipidemia were measured on d 60 at 2 h post feeding, with all other serum measures assessed on d 70. Liver tissue was collected on d 70 for histology, triacylglyceride (TG) quantification, and metabolomics analysis. Results Tissue histology indicated the presence of steatosis in LAR, COCO and OLV compared with CON (P ≤ 0.001), with a further increase in in non-alcoholic steatohepatitis (NASH) in OLV and COCO compared with LAR (P ≤ 0.01). Alanine and aspartate aminotransferases were higher in COCO and OLV (P ≤ 0.01) than CON. All treatment groups had lower liver concentrations of methyl donor's choline and betaine versus CON, while bile acids were differentially changed (P ≤ 0.05). COCO had higher levels of TGs with less carbons (Total carbons < 52) than all other groups (P ≤ 0.05). Several long-chain acylcarnitines involved in fat oxidation were higher in OLV versus all other groups (P ≤ 0.05). Conclusions Inclusion of fats enriched in medium-chain saturated and long-chain unsaturated fatty acids in a high-fructose high-fat diet increased liver injury, compared with fats with a long-chain saturated fatty acid profile. Further research is required to investigate the mechanisms causing this difference in physiological response to these dietary fat sources. Funding Sources ARI, AcornSeekers.


1991 ◽  
Vol 10 (3) ◽  
pp. 325-340 ◽  
Author(s):  
D. R. Webb ◽  
R. A. Sanders

Caprenin (CAP) is a triglyceride that primarily contains caprylic (C8:0), capric (C10:0), and behenic (C22:0) acids. This study was undertaken to determine whether or not CAP is qualitatively digested, absorbed, and rearranged like other dietary fats and oils that contain these medium-chain and very long-chain fatty acids. In vitro results showed that neat CAP, coconut oil (CO) and peanut oil (PO) were hydrolyzed by porcine pancreatic lipase. All of the neat triglycerides also were digested in vivo by both male and female rats. This was shown by the recovery of significantly more extractable lymphatic fat than with fat-free control animals and by the recovery of orally administered triglyceride-derived fatty acids in lymph triglycerides. However, substantially more PO (74%) and CO (51%) were recovered in lymph relative to CAP (10%). These quantitative differences are consistent with the fatty acid composition of each triglyceride and primary routes of fatty acid uptake. The 24-h lymphatic recovery of CAP-derived C8:0, C10:0, and C22:0 averaged 3.9%, 17.8%, and 11.2%, respectively, for male and female rats. The C8:0 and C10:0 results approximated those obtained with CO (2.0% and 16.3%, respectively). In contrast, the 24-h absorbability of C22:0 in CAP was significantly less than that seen in PO (55.4%). Finally, there was no evidence of significant rearrangement of the positions of fatty acids on glycerol during digestion and absorption. Those fatty acids recovered in lymphatic fat tended to occupy the same glyceride positions that they did in the neat administered oils. However, the lymph fats recovered from all animals dosed with fat emulsions were enriched with endogenous lymph fatty acids. It is concluded that CAP is qualitatively digested, absorbed, and processed like any dietary fat or oil that contains medium-chain and very long-chain fatty acids.


2000 ◽  
Vol 33 (13) ◽  
pp. 4690-4698 ◽  
Author(s):  
Michele B. Kellerhals ◽  
Birgit Kessler ◽  
Bernard Witholt ◽  
Alexandre Tchouboukov ◽  
Helmut Brandl

1990 ◽  
Vol 258 (1) ◽  
pp. R216-R221 ◽  
Author(s):  
M. I. Friedman ◽  
I. Ramirez ◽  
C. R. Bowden ◽  
M. G. Tordoff

Administration of methyl palmoxirate (MP; 10 mg/kg po), an inhibitor of carnitine palmitoyltransferase I (CPT I), increased the food intake of rats maintained on a diet high in triglycerides comprised of long-chain fatty acids, which require CPT I for mitochondrial uptake and oxidation. MP did not affect food intake in rats fed a comparable diet high in medium-chain fatty acids, which do not require CPT I for mitochondrial uptake and oxidation. The feeding response to MP was reduced more effectively by an intragastric preload of medium-chain triglyceride (MCT) oil than a preload of a long-chain triglyceride (LCT) oil. Food intake of MCT- and LCT-fed rats differed under control conditions (no MP), and this appeared to reflect differences in the diurnal distribution of feeding. Measurement of plasma ketone body concentrations indicated that the dietary manipulations and MP had their intended metabolic effects. The results strongly suggest that mitochondrial transport of fatty acids plays a role in the control of food intake. CPT I participates in that control by regulating the partitioning of long-chain fatty acids between pathways of storage and intramitochondrial oxidation.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 890
Author(s):  
Syed Ammar Hussain ◽  
Alexis Garcia ◽  
Md. Ahsanul Kabir Khan ◽  
Shaista Nosheen ◽  
Yao Zhang ◽  
...  

Concerns about global warming, fossil-fuel depletion, food security, and human health have promoted metabolic engineers to develop tools/strategies to overproduce microbial functional oils directly from renewable resources. Medium-chain fatty acids (MCFAs, C8–C12) have been shown to be important sources due to their diverse biotechnological importance, providing benefits ranging from functional lipids to uses in bio-fuel production. However, oleaginous microbes do not carry native pathways for the production of MCFAs, and therefore, diverse approaches have been adapted to compensate for the requirements of industrial demand. Mucor circinelloides is a promising organism for lipid production (15–36% cell dry weight; CDW) and the investigation of mechanisms of lipid accumulation; however, it mostly produces long-chain fatty acids (LCFAs). To address this challenge, we genetically modified strain M. circinelloides MU758, first by integrating heterologous acyl-ACP thioesterase (TE) into fatty acid synthase (FAS) complex and subsequently by modifying the β-oxidation pathway by disrupting the acyl-CoA oxidase (ACOX) and/or acyl-CoA thioesterase (ACOT) genes with a preference for medium-chain acyl-CoAs, to elevate the yield of MCFAs. The resultant mutant strains (M-1, M-2, and M-3, respectively) showed a significant increase in lipid production in comparison to the wild-type strain (WT). MCFAs in M-1 (47.45%) was sharply increased compared to the wild type strain (2.25%), and it was further increased in M-2 (60.09%) suggesting a negative role of ACOX in MCFAs production. However, MCFAs in M-3 were much decreased compared to M-1,suggesting a positive role of ACOT in MCFAs production. The M-2 strain showed maximum lipid productivity (~1800 milligram per liter per day or mg/L.d) and MCFAs productivity (~1100 mg/L.d). Taken together, this study elaborates on how the combination of two multidimensional approaches, TE gene over-expression and modification of the β-oxidation pathway via substantial knockout of specific ACOX gene, significantly increased the production of MCFAs. This synergistic approach ultimately offers a novel opportunity for synthetic/industrial biologists to increase the content of MCFAs.


Sign in / Sign up

Export Citation Format

Share Document