scholarly journals Design & Analysis of Microstrip Patch Antenna Using Different Dielectric Materials for WiMAX Communication System

Author(s):  
Md. Moidul Islam ◽  
Raja Rashidul Hasan ◽  
Md. Mostafizur Rahman ◽  
Kazi Saiful Islam ◽  
S.M. Al-Amin

This Paper presents Microstrip patch antenna for WiMAX communication system which operate at 5.8 GHz frequency band. The main objective of this paper is to design and observe the performance of the designed microstrip patch antenna for different dielectric materials. The size of the designed antenna has been also miniaturized. Better performance is observed for FR4 and dupont-951 dielectric material. For FR4 radiation efficiency is-2.776 dB and total efficiency is -3.026 dB at 5.8 GHz, this indicates better performance. And for dupont-951 the return loss is much lower comparing to the other dielectric materials used in this research, which is -16.609 dB. Also for dupont-951 and FR4, VSWR is found 1.35 and 1.7 respectively which is desirable. Also the size of the antenna has been reduced. In this paper we also observed and analyzed the radiation pattern of far field region, gain, radiation efficiency and total efficiency for different dielectric materials.

In this paper, a planar multiband microstrip patch antenna is presented for narrow band internet of things (NBIoT) applications. The simple planar structure covers three of the approved bands (830-840 MHz), (850-890 MHz) and (1190-1200 MHz). The return loss at resonance frequencies is less than20dB and radiation pattern is omnidirectional as desired, for all the bands. Simple basic equations of microstrip patch antenna are used for design. The simulation and performance analysis is done using HFSS tool. The design considers simple, easily available printed circuit board (PCB) with FR4 dielectric material between the patch and ground plane. Which is inexpensive, fulfills the basic need of the application. The optimetrics of the HFSS simulation tool are handy, used extensively to find appropriate feed position, optimize return loss, gain and to tune the resonance frequencies.


Author(s):  
Kinde Anlay Fante ◽  
Mulugeta Tegegn Gemeda

In this paper, a 28 GHz broadband microstrip patch antenna (MSPA) for 5G wireless applications is presented. The Rogers RT/Duroid5880 substrate material, with a dielectric constant of 2.2, the thickness of 0.3451 mm, and loss tangent of 0.0009, is used for the studied antenna to operate at 28 GHz center frequency. The proposed design of antenna is simulated by using CST studio suite. The simulation results highlight that the studied antenna has a return loss of -54.49 dB, a bandwidth of 1.062 GHz, a gain of 7.554 dBi. Besides, radiation efficiency and the sidelobe level of the proposed MSPA are 98% and 18.4 dB, respectively. As compared to previous MSPA designs reported in the recent scientific literature, the proposed rectangular MSPA has achieved significantly improved performance in terms of the bandwidth, beam-gain, return loss, sidelobe level, and radiation efficiency. Hence, it is a potential contender antenna type for emerging 5G wireless communication applications.


2012 ◽  
Vol 1 (4) ◽  
pp. 335 ◽  
Author(s):  
Pramod Singhal ◽  
Bimal Garg

Communication applications require wide band and highly directive planner antennas. For such requirement this work deals with the analysis and simulation of a rectangular microstrip patch antenna loaded with INTERCONNECTED SRR metamaterial structure at a height of 3.2mm from the ground plane. The work also investigates the potential properties of the proposed metamaterial structure. The proposed Antenna is designed at a operating frequency of 2.75GHz to meet S-Band (2-4GHz) applications. By loading Interconnected SRR metamaterial structure with the rectangular patch antenna at a height of 3.2mm, the antennas bandwidth is found to be increased up to 378MHz and return loss is reduced to -42.2dB i.e. the potential properties like return loss, bandwidth, directivity and total efficiency of the proposed antenna increases to a great extent in comparison to the rectangular patch antenna alone. Double Negative properties of metamaterial have been proved by Nicolson-Ross-weir (NRW) method.


A single band microstrip-fed patch antenna is presented which contains the radiating structure having concave shape slots and split ring resonator loaded in the partial ground plane. This partial ground plane has been used to enhance the bandwidth of proposed antenna. Both the partial ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed concave shape microstrip patch antenna (MPA) is resonate at single frequency band from 3.4-3.8 GHz with 400 MHz bandwidth and corresponding return loss of -25dB. A parametric study has been performed for the concave shape slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Furthermore, the radiation performance of antenna in terms of gain and radiation efficiency has been analyzed . The proposed antenna is having a peak gain of 3.2 dB and radiation efficiency of 94%.


Author(s):  
PREET KAUR ◽  
RAJIV NEHRA ◽  
MANJEET KADIAN ◽  
DR. ASOK DE ◽  
DR. S.K. AGGARWAL

In this paper, two novel defected ground structures (DGS) are proposed to improve the return loss, compactness, gain and radiation efficiency of rectangular microstrip patch antenna. The performance of antenna is characterized by the shape, dimension & the location of DGS at specific position on ground plane. By incorporating a peacock shaped slot of optimum geometries at suitable location on the ground plane, return loss is enhanced from -23.89 dB to -43.79 dB, radiation efficiency is improved from 97.66% to 100% and compactness of 9.83% is obtained over the traditional antenna .Simulation results shows that the patch antenna with star shaped DGS can improve the impedance matching with better return loss of -35.053 dB from -23.89 dB and compactness of 9% is achieved. In the end comparison of both DGS shapes is carried out to choose one best optimize one. The proposed antennas are simulated and analyzed using Ansoft HFSS (version 11.1) software.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012022
Author(s):  
Ali H. Khidhir

Abstract The rectangular microstrip patch antenna (RMPA) had designed and manufactured to operate in two working areas of the worldwide interoperability for microwave access (WiMAX) communication system. Flame retardant (FR-4) material had used for implementation, and the total antenna size was 57.22 × 1.6 mm3. The chemical method was used to implement the RMPA. The proposed antenna is capable of working at frequencies 2.51 GHz and 3.87 GHz experimentally. The results were -21.62 dB of return loss, and 50 MHz of bandwidth for the first frequency. Also, for second frequency was -20.01 dB of return loss, and 80 MHz of bandwidth.


2012 ◽  
Vol 2 (8) ◽  
pp. 130-133
Author(s):  
Amandeep Singh Amandeep Singh ◽  
◽  
Sankul Agarwal ◽  
Vaibhav Sharma ◽  
Shivam Pandita

Sign in / Sign up

Export Citation Format

Share Document