scholarly journals Vehicular Networks Performance Evaluation Based on Downlink Scheduling Algorithms for High-Speed Long Term Evolution – Vehicle

Author(s):  
Hussain Mahdi ◽  
Baidaa Al-Bander ◽  
Mohammed Hasan Alwan ◽  
Mohammed Salah Abood ◽  
Mustafa Maad Hamdi

<p class="Abstract"><span lang="EN-US">Moving is the key to modern life. Most things are in moving such as vehicles and user mobiles, so the need for high-speed wireless networks to serve the high demand of the wireless application becomes essential for any wireless network design. The use of web browsing, online gaming, and on-time data exchange like video calls as an example means that users need a high data rate and fewer error communication links. To satisfy this, increasing the bandwidth available for each network will enhance the throughput of the communication, but the bandwidth available is a limited resource which means that thinking about techniques to be used to increase the throughput of the network is very important. One of the techniques used is the spectrum sharing between the available networks, but the problem here is when there is no available channel to connect with. This encourages researchers to think about using scheduling as a technique to serve the high capacity on the network. Studying scheduling techniques depends on the Quality-of-Service (QoS) of the network, so the throughput performance is the metric of this paper. In this paper, an improved Best-CQI scheduling algorithm is proposed to enhance the throughput of the network. The proposed algorithm was compared with three </span><span lang="MS">user scheduling algorithms to evaluate the throughput performance which are Round Robin (RR), Proportional Fair (PF), and Best-CQI algorithms. The study is performed under Line-of-Sight (LoS) link at carrier frequency 2.6 GHz to satisfy the Vehicular Long Term Evolution (LTE-V) with the high-speed scenario. The simulation results show that the proposed algorithm outperforms the throughput performance of the other algorithms.</span></p>

2013 ◽  
Vol 14 (1) ◽  
Author(s):  
M. H. Habaebi ◽  
J. Chebil ◽  
A. G. Al-Sakkaf ◽  
T. H. Dahawi

Long-Term Evolution (LTE) is a recently evolving technology characterized by very high speed data rate that allows users to access internet through their mobile as well as through other electronic devices.  Such technology is intended to support variety of IP-based heterogeneous traffic types. Traffic scheduling plays an important role in LTE technology by assigning the shared resources among users in the most efficient manner. This paper discusses the performance of three types of scheduling algorithms namely: Round Robin, best Channel Quality Indicator (CQI) and Proportional Fair (PF) schedulers representing the extreme cases in scheduling. The scheduling algorithms performances on the downlink were measured in terms of throughput and block error rate using a MATLAB-based system level simulation. Results indicate that the best CQI algorithm outperforms other algorithms in terms of throughput levels but on the expense of fairness to other users suffering from bad channel conditions. ABSTRAK: Teknologi baru Evolusi Jangka Panjang (LTE) sentiasa berubah dan ia bercirikan kelajuan kadar data sangat tinggi yang membolehkan pengguna mengakses internet melalui telefon bimbit dan peranti elektronik lain. Teknologi seperti ini bertujuan menyokong pelbagai jenis trafik heterogen berasaskan IP. Penjadualan trafik memainkan peranan penting dalam teknologi LTE bagi mengagihkan sumber perkongsian secara paling berkesan di kalangan pengguna. Kertas ini membincangkan prestasi tiga jenis algoritma penjadualan iaitu: pusingan Robin, penunjuk kualiti saluran (CQI) terbaik dan  penjadualan berkadar adil (PF) yang merupakan kes ekstrem dalam penjadualan. Prestasi penjadualan Algoritma di pautan turun diukur dari segi daya pemprosesan dan kadar ralat blok melalui simulasi  sistem menggunakan MATLAB. Hasil kajian menunjukkan algoritma CQI adalah yang terbaik berbanding hasil algoritma lain dari segi tahap daya pemprosesan tetapi algoritma ini menyebabkan pengguna lain mengalami keadaan saluran buruk.KEYWORDS: LTE; round robin; best CQI; proportional fair; scheduling; resource blocks


2013 ◽  
Vol 18 (2) ◽  
pp. 237-253 ◽  
Author(s):  
Jaime Calle-Sanchez ◽  
Mariano Molina-Garcia ◽  
Jose I. Alonso ◽  
Alfonso Fernandez-Duran

Author(s):  
Mohd Mueen Ul Islam Mattoo ◽  
Huda Adibah Mohd Ramli

<span lang="EN-GB">The allocation of radio resources is one of the most critical functions performed by the Radio Resource Management (RRM) mechanisms in the downlink Long Term Evolution – Advanced (LTE-Advanced). Packet scheduling concerns itself with allocation of these radio resources in an intelligent manner such that system throughput/capacity can be maximized whilst the required multimedia Quality of Service (QoS) is met. Majority of the previous studies of packet scheduling algorithms for LTE-Advanced did not take the effect of channel impairments into account. However, in real world the channel impairments cannot be obliterated completely and have a direct impact on the packet scheduling performance. As such, this work studies the impact of channel impairments on packet scheduling performance in a practical downlink LTE-Advanced. The simulation results obtained demonstrate the efficacy of RM2 scheduling algorithm over other scheduling algorithms in maximizing the system capacity and is more robust on the effect of the cellular channel impairments.  </span>


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sapta Nugraha

Abstract4G Long Term Evolution (LTE) has a standard for wireless communication with high-speed data access on cellular phones which have standard parameter i.e. power control. Power control is a method to avoid interference inter-users, as a result of power variations. Interference inter-users will cause performance limitations of the quality of service telecommunications operator. In this paper, we will design power control on the uplink channel based on the Signal to Interference Ratio (SIR) so that power level of mobile station (MS) are approximately equal. Simulation results show that power of MS can reach -7 dB, average time above 17 ms. The results of the SIR can order MS to equalize the SIR power levels transmitted by some MS with SIR reference value. Keywords: power control, uplink channel, SIR, mobile station Abstrak4G Long Term Evolution (LTE) memiliki standar komunikasi nirkabel akses data berkecepatan tinggi pada telepon seluler yang memiliki parameter standar yaitu kendali daya. Kendali daya merupakan metode untuk menghindari interferensi antar pengguna akibat variasi daya. Interferensi antar pengguna menyebabkan keterbatasan kinerja kualitas layanan operator telekomunikasi. Pada penelitian ini, akan dirancang kendali daya kanal uplink berdasarkan SIR agar daya mobile station (MS) mendekati sama. Hasil simulasi menunjukkan bahwa daya MS dapat mencapai -7 dB, rerata waktu di atas 17 ms. Hasil menunjukkan SIR dapat memerintahkan MS menyamakan daya yang ditransmisikan beberapa MS dengan nilai SIR referensi. Kata Kunci: kendali daya, kanal uplink, SIR, mobile station


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Bamidele Moses Kuboye

The advancement in cellular communications has enhanced the special attention given to the study of resource allocation schemes. This study is to enhance communications to attain efficiency and thereby offers fairness to all users in the face of congestion experienced anytime a new product is rolled out. The comparative analysis was done on the performance of Enhanced Proportional Fair, Qos-Aware Proportional Fair and Logarithmic rule scheduling algorithms in Long Term Evolution in this work. These algorithms were simulated using LTE system toolbox in MATLAB and their performances were compared using Throughput, Packet delay and Packet Loss Ratio. The results showed Qos-Aware Proportional Fair has a better performance in all the metrics used for the evaluation.


Sign in / Sign up

Export Citation Format

Share Document