scholarly journals Where's the Grass? Disappearing Submerged Aquatic Vegetation and Declining Water Quality in Lake Mattamuskeet

2017 ◽  
Vol 8 (2) ◽  
pp. 401-417 ◽  
Author(s):  
Michelle C. Moorman ◽  
Tom Augspurger ◽  
John D. Stanton ◽  
Adam Smith

Abstract Major threats to aquatic systems such as shallow lakes can include declining water quality, the loss of macrophyte beds, and the occurrence of harmful algal blooms. Often, these changes go unnoticed until a shift from a clear, oligotrophic system dominated by macrophyte beds to a turbid, eutrophic system dominated by phytoplankton and associated harmful algal blooms has occurred. Lake Mattamuskeet, which mostly lies within the boundary of Mattamuskeet National Wildlife Refuge, North Carolina, is a shallow lake that has recently experienced a reduction in water clarity and macrophyte beds, also referred to as submerged aquatic vegetation (SAV), and an increase in nutrients, phytoplankton, harmful algal blooms, and cyanotoxin production. At Lake Mattamuskeet, SAV coverage and water clarity declined between the 1980s and 2015. During the same time, significantly increasing trends in nitrogen, phosphorus, turbidity, suspended sediments, chlorophyll a, and pH occurred. Current water-quality conditions (2012–2015) are not conducive to SAV survival and, in some cases, do not meet North Carolina water-quality standards for the protection of aquatic life. Water clarity declines appear to predate the SAV die-offs on the east side. Moving forward, SAV will serve as a primary indicator for lake health; and lake monitoring, research, and management efforts will focus on the restoration of aquatic grasses and water quality at Lake Mattamuskeet.

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3233
Author(s):  
Kyle J. Hartman ◽  
David I. Wellman ◽  
Joseph W. Kingsbury ◽  
Daniel A. Cincotta ◽  
Janet L. Clayton ◽  
...  

Inland waters provide valuable ecosystem goods and services and are intrinsically linked to downstream coastal areas. Water quality impairments that lead to harmful algal blooms damage valuable commercial and recreational fishing economies, threaten food security, and damage already declining native species. Prymnesium parvum is a brackish water golden alga that can survive in salinities less than 1 ppm and when it blooms it can create toxins that kill aquatic life. Blooms have been documented globally including 23 U.S. states. We report a case study of an aquatic life kill associated with P. parvum in Dunkard Creek (WV-PA, USA), in the Ohio River Drainage. We document the immediate impact to aquatic life and responses of the aquatic community ten years post-kill. Most fish species returned within a year. Excellent connectivity to unimpacted tributaries and a river downstream likely aided the reestablishment of most species, although some had not reached pre-kill abundances after ten years. Mussel taxa did not recover despite significant efforts to relocate adult mussels and stocking of host fish inoculated with glochidia; probably due to other water quality impairments. Given the potential for lateral transport of P. parvum via industry and natural vectors we conducted an ecological risk assessment mapping the spatial extent of U.S. waters that could be threatened by golden algae colonization and blooms using a national water quality database and a state database. Overall, about 4.5% of lotic systems appeared to have some level of risk of harboring P. parvum, making them at risk for potential golden algae blooms in the face of increasing salinization and eutrophication of freshwaters.


Author(s):  
A. Tamondong ◽  
T. Nakamura ◽  
Y. Kobayashi ◽  
M. Garcia ◽  
K. Nadaoka

Abstract. One of the major factors controlling the distribution and abundance of marine submerged aquatic vegetation (SAV) is light availability. Reduced water clarity due to sediment loading from rivers greatly affects the health and coverage of seagrasses and seaweeds. Monitoring SAV using unmanned aerial vehicles (UAV) has been getting attention because of its cost-effectiveness and ease of use. In this research, a low-cost UAV was utilized to assess the impacts of river discharges on SAV in Busuanga Island, Philippines. Linear regression was performed to determine the effectivity and accuracy of UAV-based percent cover estimation compared to established field survey methods of monitoring SAV. Water quality was estimated in the study area by performing spatial interpolation methods of in situ measurement of turbidity, chlorophyll, temperature, salinity, and dissolved oxygen using a multi-parameter water quality sensor. Current velocity and tidal fluctuations were monitored using bottom-mounted sensors deployed near the river mouth and in seagrass and seaweed areas with relatively good water clarities. Four stations were surveyed using automated UAV missions which were flown simultaneously with field observations. Each station surveyed has varying distances from the river mouth. Results from the classification of the UAV data and field survey show that SAV is more abundant as the distance from the river mouth increases and the turbidity decreases. Classification overall accuracies of UAV orthophotos ranging from 87.91–93.41% were achieved using Maximum Likelihood (ML) Classification. Comparison of field-based and UAV-based survey of percent cover of seagrasses show an overestimation of 1.75 times from the UAV compared to field observations.


Toxins ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 92 ◽  
Author(s):  
Daniel Wiltsie ◽  
Astrid Schnetzer ◽  
Jason Green ◽  
Mark Vander Borgh ◽  
Elizabeth Fensin

The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.


1999 ◽  
Vol 5 (4) ◽  
pp. 306 ◽  
Author(s):  
C. P. Onuf

Most harmful algal blooms are relatively short, violent paroxysms to aquatic systems. The Texas brown tide was unique in its 7-year domination of upper Laguna Madre wherein it reduced light penetrating 1 m from 31 to 63% on an annual basis between June 1990 and May 1997. In response, seagrasses declined in biomass in deep areas for two years. Over the next three years, bare areas opened up in the deepest areas of the seagrass meadow and the outer seagrass boundary retreated landward. In the last two years of the brown tide, regression of the dominant species, Halodule wrightii, slowed and stopped, and Halophila engelmanni, a previously minor species, revegetated some areas. Subsequent to cessation of meadow retreat, water clarity improved to pre-brown tide levels, consistent with the hypothesis that regeneration of nutrients from retreating sea grass meadow may have been the source of the nutrient subsidy required to sustain the brown tide at high concentration. However, after a short interlude of clear water and Halodule recovery, a resurgence of the bloom occurred and areas of regrowth succumbed. Although human activities did not seem to be involved in initiation or persistence of the brown tide, nutrients brought in by runoff from agricultural lands may have contributed to the return of bloom conditions.


Ecosystems ◽  
2006 ◽  
Vol 9 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Stuart E. G. Findlay ◽  
William C. Nieder ◽  
Elizabeth A. Blair ◽  
David T. Fischer

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sachidananda Mishra ◽  
Richard P. Stumpf ◽  
Blake A. Schaeffer ◽  
P. Jeremy Werdell ◽  
Keith A. Loftin ◽  
...  

AbstractCyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and public health issue worldwide because of their ability to form dense biomass and produce toxins. Models and algorithms have been developed to detect and quantify cyanoHABs biomass using remotely sensed data but not for quantifying bloom magnitude, information that would guide water quality management decisions. We propose a method to quantify seasonal and annual cyanoHAB magnitude in lakes and reservoirs. The magnitude is the spatiotemporal mean of weekly or biweekly maximum cyanobacteria biomass for the season or year. CyanoHAB biomass is quantified using a standard reflectance spectral shape-based algorithm that uses data from Medium Resolution Imaging Spectrometer (MERIS). We demonstrate the method to quantify annual and seasonal cyanoHAB magnitude in Florida and Ohio (USA) respectively during 2003–2011 and rank the lakes based on median magnitude over the study period. The new method can be applied to Sentinel-3 Ocean Land Color Imager (OLCI) data for assessment of cyanoHABs and the change over time, even with issues such as variable data acquisition frequency or sensor calibration uncertainties between satellites. CyanoHAB magnitude can support monitoring and management decision-making for recreational and drinking water sources.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Jennifer Braswell Alford ◽  
Elizabeth Caporuscio

Pollution inputs in surface waters have resulted in extensive impairments to water resources; however, the effectiveness of stormwater best management practices (BMPs) in reducing pollution inputs related to harmful algal blooms (HABs) in headwater streams has not been widely reported. Skypark, Santa’s Village, is an outdoor recreation area in the semiarid San Bernardino National Forest, California. Recreational activities and impervious surfaces at the site contribute pollution to Hooks Creek, a first-order headwater tributary of the Mojave River. The Natural Resources Conservation Service designed and constructed a stormwater sediment erosion control basin system to reduce site gully erosion and improve surface water quality in situ and downstream. Basin water quality was tested biweekly for parameters associated with HABs including temperature, dissolved oxygen, pH, turbidity, conductivity, nitrate (NO3−), and ammonium (NH4+) in situ during wet and dry seasons, with periodic testing for total suspended solids (TSS), total dissolved solids (TDS), total coliform (TC), and Escherichia coli (EC). The BMP structure was effective in lowering temperature and pH and reducing NO3−, TDS, and turbidity during precipitation events, and increased pH levels and lower concentrations of TSS, TC, and EC were present during the dry season. Despite these advantages, the BMP was ineffective in reducing (NH4+) concentrations, a primary contributor to HABs, with 100% of the samples exceeding regulatory criteria throughout the study period. Results highlight the benefits and limitations of stormwater BMPs in protecting water resources from downstream HABs to ensure water resources are protected for current and future generations.


2018 ◽  
Vol 52 (4) ◽  
pp. 88-93
Author(s):  
Susan Hamburger ◽  
Kenneth T. Gioeli ◽  
David Berthold ◽  
H. Dail Laughinghouse

AbstractThe University of Florida's Institute of Food and Agricultural Sciences (UF/IFAS) Florida Master Naturalist Program (FMNP) is an adult environmental education program with more than 450 trained program graduates in St. Lucie County, Florida. It is a collaborative effort of the UF/IFAS Extension St. Lucie County, St. Lucie County Environmental Resources Department, and partner agencies. Four UF/IFAS Florida Master Naturalist volunteers were recruited and received training and supplies to conduct water quality testing and algae collection in the Indian River Lagoon as part of the Volunteer Algae Monitoring Program (VAMP). The UF/IFAS research and extension faculty developed VAMP in response to the 2016 harmful algal blooms (HABs) in the Indian River Lagoon that resulted in dramatic impacts on businesses, residents, and visitors in Martin, St. Lucie, and Indian River counties. These HAB episodes demonstrate the importance of having informed citizen scientists with an understanding of the problems and threats. The VAMP citizen scientists conducted a water quality awareness survey with the general public after proactively scouting for HABs by collecting samples and conducting water quality testing at three waypoints in the Indian River Lagoon during May to November 2017 (excluding October) and February 2018. They utilized UF/IFAS Water Watch chemistry tests and processed and shipped water samples to the Laughinghouse Lab at the UF/IFAS Fort Lauderdale Research and Education Center, which conducted algae counts and genetic testing to determine the presence of harmful algae expressing microcystin-producing genes. Test results indicated fluctuating and inconsistent levels of saxitoxin but no indications of microcystins across the three sites and over time.


Sign in / Sign up

Export Citation Format

Share Document