Recent Microseismicity and Normal Fault Activity in the Northeastern Oman Mountains, UAE

Author(s):  
A. Fowler ◽  
H. Baker
2017 ◽  
Vol 712-713 ◽  
pp. 64-71 ◽  
Author(s):  
Antonio J. Gil ◽  
Jesús Galindo-Zaldívar ◽  
Carlos Sanz de Galdeano ◽  
Maria Jesús Borque ◽  
Alberto Sánchez-Alzola ◽  
...  

Author(s):  
S.S. Hanna ◽  
J.D. Smewing

Melanges and debris flows with clasts derived from the top of the Natih Formation found in shales in the base of the Aruma Group indicate that a period of Structural growth on the platform took place during Aruma deposition in the Late Cretaceous. In this respect the platform in the Jebel Salakh area may have undergone a similar period of structural growth in the Late Cretaceous to the Fahud area where a syn-Aruma normal fault down throwing to the South accounts for a difference in the stratigraphic thickness of the Aruma of 1 km. A younger series of debris flows in the Aruma of the Sufrat al Khays area to the South of Jehel Salakh is dated as Campanian/Maastrichtian. The clasts in these flows were derived exclusively from the Simsima limestones. Natih-derived elasts are conspicuously absent. This is taken to indicate that the Madamar-Salakh Qusaybah range was covered by Aruma sediments at this time and did not form the distinctive positive feature seen at present - i.e. Madamar-Salakh-Qusaybah range folding though partly Late Cretaceous is mainly Post-Manslrichtian in age. This Post Maastrichtian event in the Madamar-Salakh-Qusaybah range produced a series of doubly-plunging anticlines in the Cretaceous strata- These folds show a high degree of brittle extension in the form of normal faults and extensional fractures, The faults are delineated by fault gouge with visibly interconnected void space. In the subsurface, if such fractures were developed in a fold closure similar to those seen at the surface in the Madamar-Salakh-Qusaybah range. then they could provide preferred conduits for oil flow and the harrier to fluid flow provided by the Aruma shale seal could lead to a hydrocarbon accumulation.


2021 ◽  
Author(s):  
Amin Kahrizi ◽  
Matthias Delescluse ◽  
Mathieu Rodriguez ◽  
Pierre-Henri Roche ◽  
Anne Bécel ◽  
...  

<p>Acoustic full-waveform inversion (FWI), or waveform tomography, involves use of both phase and amplitude of the recorded compressional waves to obtain a high-resolution P-wave velocity model of the propagation medium. Recent theoretical and computing advances now allow the application of this highly non-linear technique to field data. This led to common use of the FWI for industrial purposes related to reservoir imaging, physical properties of rocks, and fluid flow. Application of FWI in the academic domain has, so far, been limited, mostly because of the lack of adequate seismic data. Modern multichannel seismic (MCS) reflection data acquisition now  have long offsets which, in some cases, enable constraining FWI-derived subsurface velocities at a significant enough depth to be useful for structural or tectonic purposes.</p><p>In this study, we show how FWI can help decipher the record of a fault activity through time at the Shumagin Gap in Alaska. The MCS data were acquired on R/V Marcus G. Langseth during the 2011 ALEUT cruise using two 8-km-long seismic streamers and a 6600 cu. in. tuned airgun array. One of the most noticeable reflection features imaged on two profiles is a large, landward-dipping normal fault in the overriding plate; a structural configuration making the area prone to generating both transoceanic and local tsunamis, including from landslides. This fault dips ~40°- 45°, cuts the entire crust and connects to the plate boundary fault at ~35 km depth, near the intersection of the megathrust with the forearc mantle wedge. The fault system reaches the surface at the shelf edge 75 km from the trench and forms the ~6-km deep Sanak basin. However, the record of the recent fault activity remains unclear as contouritic currents tend to be trapped by the topography created by faults, even after they are no longer active.  Erosion surfaces and onlaps from contouritic processes as well as gravity collapses and mass transport deposits result in a complex sedimentary record that make it challenging to evaluate the fault activity using conventional MCS imaging alone. The long streamers used facilitated recording of refraction arrivals in the targeted continental slope area, which permitted running streamer traveltime tomography followed by FWI to produce coincident detailed velocity profiles to complement the reflection sections. We performed FWI imaging on two 40-km-long sections of the ALEUT lines crossing the Sanak basin. The images reveal low velocities of mass transport deposits as well as velocity inversions that may indicate mechanically weak layers linking some faults to gravity sliding on a décollement. One section also shows a velocity inversion in continuity to a bottom simulating reflector (BSR) only partially visible in the reflection image. The BSR velocity anomaly abruptly disappears across the main normal fault suggesting either an impermeable barrier or a lack of trapped fluids/gas in the hanging wall.</p>


Tectonics ◽  
2021 ◽  
Author(s):  
Asier Madarieta‐Txurruka ◽  
Jesús Galindo‐Zaldívar ◽  
Lourdes González‐Castillo ◽  
José A. Peláez ◽  
Antonio M. Ruiz‐Armenteros ◽  
...  

2021 ◽  
Vol 64 (4) ◽  
pp. SE435
Author(s):  
Laura Leonilde Alfonsi ◽  
Francesca Romana Cinti

he focus of this study is the analysis of a cave in Central Italy, the Beatrice Cenci cave, in order to point out and constrain evidence of possible past earthquakes and of fault activity in the area. We performed a survey of seismic related damages within the cave. This included the analysis of broken/collapsed speleothems, the recognition of structural collapse, of tilting/growth alteration in the speleothems, and the mapping of fractures, joints and/or faults. To timely set the occurrence of the recognized damage, organic sediments were dated with 14C radiocarbon method. The results merged toward the recognition of two distinct seismic shaking events affecting the cave environment, one older than 30 kyr and another around 7 kyr. The deformation observed within the cave led us to the hypothesis that the events of damage were possibly linked to the activity of the regional tectonic lineament that crosses the cave, i.e., the Liri normal fault. The morphology and the evolution of the cave appear controlled by the fault zone. These speleoseismological results provided a new contribution on the knowledge of the past activity of the Liri fault and on the earthquake history of this sector of Central Apennines.


Author(s):  
G. Cheng ◽  
H. Wang ◽  
Y. Luo ◽  
H. Guo

Abstract. The Gaoliying ground fissure in Beijing has caused building cracking and road damage, and has seriously influenced city construction. Based on investigations and trenching, the influences of the fault and the variation of groundwater levels on the formation mechanism of the Gaoliying ground fissure were investigated by using FLAC3D. The results indicated that (1) the surface location of Gaoliying fissure is controlled by the underlying normal fault activity, and over pumping further exacerbates development of the ground fissure; (2) when the groundwater level declines, obvious differential settlement occurs at both sides of the ground fissure, in which greater settlement occurs in the vicinity of the hanging wall, the greater the distance from the hanging wall, the smaller the ground subsidence, however smaller ground subsidence occurs in the vicinity of the footwall, the greater the distance from the footwall, the greater the ground subsidence; (3) the vertical velocity of the ground fissure triggered by the fault activity and groundwater decline ranges from 15.5 to 18.3 mm a−1, which is basically in line with the monitoring data. The fault activity contributes about 28–39 %, and the groundwater contributes about 61–72 % to the deformation of the ground fissure, respectively.


2011 ◽  
Vol 305 (3-4) ◽  
pp. 350-358 ◽  
Author(s):  
Emanuela Falcucci ◽  
Stefano Gori ◽  
Marco Moro ◽  
Anna Rita Pisani ◽  
Daniele Melini ◽  
...  

GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 163-194 ◽  
Author(s):  
Marc Holland ◽  
Nishank Saxena ◽  
Janos L. Urai

ABSTRACT Extensive, very high quality outcrops on the southern flank of Jabal Shams, Oman Mountains, expose the complex fracture and fault network of an exhumed high-pressure cell. Veins are filled with white calcite in grey host rock, allowing 0.7 meter-resolution mapping based on satellite image interpretation, followed by ground-truthing with detailed field observation in selected areas. From Quickbird and Landsat data, a model was developed using interpreted 562 faults and 145,000 fractures in an area of 31 km2; the area of a typical 3-D seismic survey but with one hundred times higher resolution. Four generations of veins, with strikes of 130°, 000°, 090° and 045°, are overprinted by normal faults with wide cemented damage zones and offsets up to 500 m. Veins are generally a few 10s of meters long, and lack signs of strong mechanical interactions such as curving or abutting. This suggests a restoration of the bulk strength during the formation of the joints, and an anticlockwise rotation of permeability anisotropy during progressive fracturing. The spatial density of all cemented fractures is rather homogenous, but the spatial density within individual joint sets is heterogeneous, suggesting patchy fracturing during the different evolutionary stages. A weak mechanical anisotropy, caused by the veins, affects the nucleation and evolution of the anastomosing normal fault system that overprints the cemented joints.


Sign in / Sign up

Export Citation Format

Share Document