Using 2D long-streamer seismic waveform tomography to decipher sedimentary processes surrounding a forearc fault offshore Alaska

Author(s):  
Amin Kahrizi ◽  
Matthias Delescluse ◽  
Mathieu Rodriguez ◽  
Pierre-Henri Roche ◽  
Anne Bécel ◽  
...  

<p>Acoustic full-waveform inversion (FWI), or waveform tomography, involves use of both phase and amplitude of the recorded compressional waves to obtain a high-resolution P-wave velocity model of the propagation medium. Recent theoretical and computing advances now allow the application of this highly non-linear technique to field data. This led to common use of the FWI for industrial purposes related to reservoir imaging, physical properties of rocks, and fluid flow. Application of FWI in the academic domain has, so far, been limited, mostly because of the lack of adequate seismic data. Modern multichannel seismic (MCS) reflection data acquisition now  have long offsets which, in some cases, enable constraining FWI-derived subsurface velocities at a significant enough depth to be useful for structural or tectonic purposes.</p><p>In this study, we show how FWI can help decipher the record of a fault activity through time at the Shumagin Gap in Alaska. The MCS data were acquired on R/V Marcus G. Langseth during the 2011 ALEUT cruise using two 8-km-long seismic streamers and a 6600 cu. in. tuned airgun array. One of the most noticeable reflection features imaged on two profiles is a large, landward-dipping normal fault in the overriding plate; a structural configuration making the area prone to generating both transoceanic and local tsunamis, including from landslides. This fault dips ~40°- 45°, cuts the entire crust and connects to the plate boundary fault at ~35 km depth, near the intersection of the megathrust with the forearc mantle wedge. The fault system reaches the surface at the shelf edge 75 km from the trench and forms the ~6-km deep Sanak basin. However, the record of the recent fault activity remains unclear as contouritic currents tend to be trapped by the topography created by faults, even after they are no longer active.  Erosion surfaces and onlaps from contouritic processes as well as gravity collapses and mass transport deposits result in a complex sedimentary record that make it challenging to evaluate the fault activity using conventional MCS imaging alone. The long streamers used facilitated recording of refraction arrivals in the targeted continental slope area, which permitted running streamer traveltime tomography followed by FWI to produce coincident detailed velocity profiles to complement the reflection sections. We performed FWI imaging on two 40-km-long sections of the ALEUT lines crossing the Sanak basin. The images reveal low velocities of mass transport deposits as well as velocity inversions that may indicate mechanically weak layers linking some faults to gravity sliding on a décollement. One section also shows a velocity inversion in continuity to a bottom simulating reflector (BSR) only partially visible in the reflection image. The BSR velocity anomaly abruptly disappears across the main normal fault suggesting either an impermeable barrier or a lack of trapped fluids/gas in the hanging wall.</p>

2020 ◽  
Author(s):  
Amin Kahrizi ◽  
Matthias Delescluse ◽  
Mathieu Rodriguez ◽  
Pierre-Henri Roche ◽  
Anne Becel ◽  
...  

<p>Acoustic full-waveform inversion (FWI), or waveform tomography, involves use of both phase and amplitude of the recorded compressional waves to obtain a high-resolution P-wave velocity model of the propagation medium. Recent theoretical and computing advances now allow the application of this highly non-linear technique to field data. This led to common use of the FWI for industrial purposes related to reservoir imaging, physical properties of rocks, and fluid flow. Application of FWI in the academic domain has, so far, been limited, mostly because of the lack of adequate seismic data. While refraction seismic datasets include large source-receiver offsets that are useful to find a suitable starting velocity model through traveltime tomography, these acquisitions rarely reach the high density of receivers necessary for waveform tomography. On the other hand, multichannel seismic (MCS) reflection data acquisition has a dense receiver spacing but only modern long-streamer data have offsets that, in some cases, enable constraining subsurface velocities at a significant enough depth to be useful for structural or tectonic purposes.</p><p>In this study, we show how FWI can help decipher the record of a fault activity through time at the Shumagin Gap in Alaska. The MCS data were acquired on RV Marcus G. Langseth during the ALEUT cruise in the summer of 2011 using two 8-km-long seismic streamers and a 6600 cu. in. tuned airgun array. One of the most noticeable reflection features imaged on two profiles is a large, landward-dipping normal fault in the overriding plate; a structural configuration making the area prone to generating both transoceanic and local tsunamis, including from landslides. This fault dips ~40°- 45°, cuts the entire crust and connects to the plate boundary fault at ~35 km depth, near the intersection of the megathrust with the forearc mantle wedge. The fault system reaches the surface at the shelf edge 75 km from the trench, forming the Sanak basin where the record of the recent activity of the fault is not clear. Indeed, contouritic currents tend to be trapped by the topography created by faults, even after they are no longer active.  Erosion surfaces and onlaps from contouritic processes as well as gravity collapses and mass transport deposits results in complex structures that make it challenging to evaluate the fault activity. The long streamers used facilitated recording of refraction arrivals in the target continental slope area, which permitted running streamer traveltime tomography followed by FWI to produce coincident detailed velocity profiles to complement the reflection sections. FWI imaging of the Sanak basin reveals low velocities of mass transport deposits and velocity inversions indicate mechanically weak layers linking some faults to gravity sliding on a décollement. These details question previous interpretation of a present-day active fault. Our goal is to further analyze the behavior of the fault system using the P-wave velocity models from FWI to quantitatively detect fluids and constrain sediment properties.</p>


2020 ◽  
Author(s):  
Ryan Gold ◽  
William Stephenson ◽  
Richard Briggs ◽  
Christopher DuRoss ◽  
Eric Kirby ◽  
...  

<p>A fundamental question in seismic hazard analysis is whether <30º-dipping low-angle normal faults (LANFs) slip seismogenically. In comparison to more steeply dipping (45-60º) normal faults, LANFs have the potential to produce stronger shaking given increased potential rupture area in the seismogenic crust and increased proximity to manmade structures built on the hanging wall. While inactive LANFs have been documented globally, examples of seismogenically active LANFs are limited. The western margin of the Panamint Range in eastern California is defined by an archetype LANF that dips west beneath Panamint Valley and has evidence of Quaternary motion. In addition, high-angle dextral-oblique normal faults displace mid-to-late Quaternary alluvial fans near the range front. To image shallow (<1 km depth), crosscutting relationships between the low- and high-angle faults along the range front, we acquired two high-resolution P-wave seismic reflection profiles. The northern ~4.7-km profile crosses the 2-km-wide Wildrose Graben and the southern ~1.1-km profile extends onto the Panamint Valley playa, ~7.5 km S of Ballarat, CA. The profile across the Wildrose Graben reveals a robust, low-angle reflector that likely represents the LANF separating Plio-Pleistocene alluvial fanglomerate and pre-Cambrian meta-sedimentary deposits. High-angle faults interpreted in the seismic profile correspond to fault scarps on Quaternary alluvial fan surfaces. Interpretation of the reflection data suggests that the high-angle faults vertically displace the LANF up to 70 m within the Wildrose Graben. Similarly, the profile south of Ballarat reveals a low-angle reflector, which appears both rotated and displaced up to 260 m by high-angle faults. These results suggest that near the Panamint range front, the high-angle faults are the dominant late Quaternary structures. We conclude that, at least at shallow (<1 km) depths, the LANF we imaged is not seismogenically active today.</p>


2019 ◽  
Vol 500 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Jacob Geersen ◽  
Andrea Festa ◽  
Francesca Remitti

AbstractThe subduction of large and heterogeneous mass-transport deposits (MTDs) is discussed to modify the structure and physical state of the plate boundary and therewith exert an influence on seismicity in convergent margins. Understanding which subduction-zone architectures and structural boundary conditions favour the subduction of MTDs, primarily deposited in oceanic trenches, is therefore highly significant. We use bathymetric and seismic reflection data from modern convergent margins to show that a large landslide volume and long runout, in concert with thin trench sediments, increase the chances for an MTD to become subducted. In regions where the plate boundary develops within the upper plate or at its base (non-accretionary margins), and in little-sedimented trenches (sediment thickness <2 km), an MTD has the highest potential to become subducted, particularly when characterized by a long runout. On the contrary, in the case of a heavily sedimented trench (sediment thickness >4 km) and short runout, an MTD will only be subducted if the thickness of subducting sediments is higher than the thickness of sediments under the MTD. The results allow identification of convergent margins where MTDs are preferentially subducted and thus potentially alter plate-boundary seismicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magali Riesner ◽  
Laurent Bollinger ◽  
Judith Hubbard ◽  
Cyrielle Guérin ◽  
Marthe Lefèvre ◽  
...  

AbstractThe largest (M8+) known earthquakes in the Himalaya have ruptured the upper locked section of the Main Himalayan Thrust zone, offsetting the ground surface along the Main Frontal Thrust at the range front. However, out-of-sequence active structures have received less attention. One of the most impressive examples of such faults is the active fault that generally follows the surface trace of the Main Boundary Thrust (MBT). This fault has generated a clear geomorphological signature of recent deformation in eastern and western Nepal, as well as further west in India. We focus on western Nepal, between the municipalities of Surkhet and Gorahi where this fault is well expressed. Although the fault system as a whole is accommodating contraction, across most of its length, this particular fault appears geomorphologically as a normal fault, indicating crustal extension in the hanging wall of the MHT. We focus this study on the reactivation of the MBT along the Surkhet-Gorahi segment of the surface trace of the newly named Reactivated Boundary Fault, which is ~ 120 km long. We first generate a high-resolution Digital Elevation Model from triplets of high-resolution Pleiades images and use this to map the fault scarp and its geomorphological lateral variation. For most of its length, normal motion slip is observed with a dip varying between 20° and 60° and a maximum cumulative vertical offset of 27 m. We then present evidence for recent normal faulting in a trench located in the village of Sukhetal. Radiocarbon dating of detrital charcoals sampled in the hanging wall of the fault, including the main colluvial wedge and overlying sedimentary layers, suggest that the last event occurred in the early sixteenth century. This period saw the devastating 1505 earthquake, which produced ~ 23 m of slip on the Main Frontal Thrust. Linked or not, the ruptures on the MFT and MBT happened within a short time period compared to the centuries of quiescence of the faults that followed. We suggest that episodic normal-sense activity of the MBT could be related to large earthquakes rupturing the MFT, given its proximity, the sense of motion, and the large distance that separates the MBT from the downdip end of the locked fault zone of the MHT fault system. We discuss these results and their implications for the frontal Himalayan thrust system.


Author(s):  
Glenn Thackray ◽  
Mark Zellman ◽  
Jason Altekruse ◽  
Bruno Protti ◽  
Harrison Colandera

Preliminary results from seismic data collected at two sites on the Teton fault reveal shallow sub-surface fault structure and a basis for evaluating the post-glacial faulting record in greater detail. These new data include high-resolution shallow 2D seismic refraction and Interferometric Multi-Channel Analysis of Surface Waves (IMASW) (O’Connell and Turner 2010) depth-averaged shear wave velocity (Vs). The Teton fault, a down-to-the east normal fault, is expressed as a distinct topographic escarpment along the base of the eastern front of the Teton Range in Wyoming. The average fault scarp height cut into deglacial surfaces in several similar valleys and an assumed 14,000 yr BP deglaciation indicates an average postglacial offset rate of 0.82 m/ka (Thackray and Staley, in review). Because the fault is located almost entirely within Grand Teton National Park (GTNP), and in terrain that is remote and difficult to access, very few subsurface studies have been used to evaluate the fault. As a result, many uncertainties exist in the present characterization of along-strike slip rate, down-dip geometry, and rupture history, among other parameters. Additionally, questions remain about the fault dip at depth. Shallow seismic data were collected at two locations on the Teton fault scarp to (1) use a non-destructive, highly portable and cost-effective data collection system to image and characterize the Teton fault, (2) use the data to estimate vertical offsets of faulted bedrock and sediment, and (3) estimate fault dip in the shallow subsurface. Vs data were also collected at three GTNP facility structures to provide measured 30 m depth-averaged Vs (Vs30) for each site. Seismic data were collected using highly portable equipment packed into each site on foot. The system utilizes a sensor line 92 m long that includes 24 geophones (channels) at 4 m intervals. At both the Taggart Lake and String Lake sites, P-wave refraction data were collected spanning the fault scarp and perpendicular to local fault strike, as well as IMASW Vs seismic lines positioned on the hanging wall to provide Vs vs. Depth profiles crossing and perpendicular to the refraction survey lines. The Taggart Lake and String Lake 2D P-wave refraction profile and IMASW Vs plots reveal buried velocity structure that is vertically offset by the Teton fault. At Taggart Lake, we interpret the velocity horizon to be the top of dense glacial sediment (possibly compacted till), which is overlain by younger, slower, sediments. This surface is offset ~13 m (down-to-the-east) across the Teton fault. The vertical offset is in agreement with the measured height of the corresponding topographic scarp (~12 - 15 m). Geomorphic analysis of EarthScope (2008) LiDAR reveals small terraces, slope inflections and an abandoned channel on the footwall side of the scarp. At String Lake, the shallow buried velocity structure is inferred as unconsolidated alluvium (till, colluvium, alluvium); this relatively low velocity zone (


2021 ◽  
Author(s):  
Miriana Chinello ◽  
Michele Fondriest ◽  
Giulio Di Toro

&lt;p&gt;The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L&amp;#8217;Aquila 2009, Mw 6.3 earthquake). The mainshocks and the aftershocks of these earthquake sequences propagate and often nucleate in fault zones cutting km-thick limestones and dolostones formations. An impressive feature of these faults is the presence, at their footwall, of few meters to hundreds of meters thick damage zones. However, the mechanism of formation of these damage zones and their role during (1) individual seismic ruptures (e.g., rupture arrest), (2) seismic sequences (e.g., aftershock evolution) and (3) seismic cycle (e.g., long term fault zone healing) are unknown. This limitation is also due to the lack of knowledge regarding the distribution, along strike and with depth, of damage with wall rock lithology, geometrical characteristics (fault length, inherited structures, etc.) and kinematic properties (cumulative displacement, strain rate, etc.) of the associated main faults.&lt;/p&gt;&lt;p&gt;Previous high-resolution field structural surveys were performed on the Vado di Corno Fault Zone, a segment of the ca. 20 km long Campo Imperatore normal fault system, which accommodated ~ 1500 m of vertical displacement (Fondriest et al., 2020). The damage zone was up to 400 m thick and dominated by intensely fractured (1-2 cm spaced joints) dolomitized limestones with the thickest volumes at fault oversteps and where the fault cuts through an older thrust zone. Here we describe two minor faults located in the same area (Central Apennines), but with shorter length along strike. They both strike NNW-SSE and accommodated a vertical displacement of ~300 m.&lt;/p&gt;&lt;p&gt;The Subequana Valley Fault is about 9 km long and consists of multiple segments disposed in an en-echelon array. The fault juxtaposes pelagic limestones at the footwall and quaternary deposits at the hanging wall. The damage zone is &lt; 25 m &amp;#160;thick &amp;#160;and comprises fractured (1-2 cm spaced joints) limestones beds with decreasing fracture intensity moving away from the master fault. However, the damage zone thickness increases up to &amp;#8764;100 m in proximity of subsidiary faults striking NNE-SSW. The latter could be reactivated inherited structures.&lt;/p&gt;&lt;p&gt;The Monte Capo di Serre Fault is about 8 km long and characterized by a sharp ultra-polished master fault surface which cuts locally dolomitized Jurassic platform limestones. The damage zone is up to 120 m thick and cut by 10-20 cm spaced joints, but it reaches an higher fracture intensity where is cut by subsidiary, possibly inherited, faults striking NNE-SSW.&lt;/p&gt;&lt;p&gt;Based on these preliminary observations, faults with similar displacement show comparable damage zone thicknesses. The most relevant damage zone thickness variations are related to geometrical complexities rather than changes in lithology (platform vs pelagic carbonates). &amp;#160;In particular, the largest values of damage zone thickness and fracture intensity occur at fault overstep or are associated to inherited structures. The latter, by acting as strong or weak barriers (sensu Das and Aki, 1977) during the propagation of seismic ruptures, have a key role in the formation of damage zones and the growth of normal faults.&lt;/p&gt;


2010 ◽  
Vol 10 ◽  
pp. 4-13 ◽  
Author(s):  
L. McNeill ◽  
D. Saffer ◽  
T. Byrne ◽  
E. Araki ◽  
S. Toczko ◽  
...  

The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay fault system &ndash; which may slip during plate boundary earthquakes &ndash; and initial drilling at Site C0011 (incoming oceanic plate) for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and <i>in situ</i> measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide (a) the history of forearc basin development (including links to growth of the megasplay fault system and modern prism), (b) the first <i>in situ</i> hydrological measurements of the plate boundary hanging wall, and (c) integration of <i>in situ</i> stress measurements (orientation and magnitude) across the forearc and with depth. A vertical seismic profile (VSP) experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significant changes in fault zone and hanging wall properties over short (< 5 km) along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatory instruments were tested for future operations. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.10.01.2010" target="_blank">10.2204/iodp.sd.10.01.2010</a>


2020 ◽  
Vol 59 (4) ◽  
pp. 299-316
Author(s):  
Mohamad Khir Abdul-Wahed ◽  
Mohammed ALISSA

Northwestern Syria is a key area in the eastern Mediterranean to study the active tectonics and stress pattern across the Arabia-Eurasia convergent plate boundary. This study aims to outline the present-day stress regime in this region of Syria using the fault plane solutions of the largest events recorded by the Syrian National Seismological Network from 1995 to 2011. A dataset of fault-plane solutions was obtained for 48 events having at least 5 P-wave polarities. The tectonic regime for most of these events is extensional and produces normal mechanisms in agreement with the local configurations of the seismogenic faults in the region. Strike-slip mechanisms are more scarce and restricted to certain areas, such as the northern extension of the Dead Sea fault system. The results of the current study reveal the spatial variations of SHmax orientation across the northwestern Syria region. This spatial variation of the present-day stress field highlights the role of main geometrically complex shear zones in the present-day stress pattern of northwestern Syria. However, these results show, regardless of the relatively small magnitudes of the studied events, they provide a picture of the local stress deviations that have currently been taking place along the local active faults.


Solid Earth ◽  
2016 ◽  
Vol 7 (6) ◽  
pp. 1537-1549 ◽  
Author(s):  
Luigi Vadacca ◽  
Emanuele Casarotti ◽  
Lauro Chiaraluce ◽  
Massimo Cocco

Abstract. Geological and seismological observations have been used to parameterize 2-D numerical elastic models to simulate the interseismic deformation of a complex extensional fault system located in the Northern Apennines (Italy). The geological system is dominated by the presence of the Alto Tiberina fault (ATF), a large (60 km along strike) low-angle normal fault dipping 20° in the brittle crust (0–15 km).  The ATF is currently characterized by a high and constant rate of microseismic activity, and no moderate-to-large magnitude earthquakes have been associated with this fault in the past 1000 years. Modelling results have been compared with GPS data in order to understand the mechanical behaviour of this fault and a suite of minor syn- and antithetic normal fault segments located in the main fault hanging wall. The results of the simulations demonstrate the active role played by the Alto Tiberina fault in accommodating the ongoing tectonic extension in this sector of the chain. The GPS velocity profile constructed through the fault system cannot be explained without including the ATF's contribution to deformation, indicating that this fault, although misoriented, has to be considered tectonically active and with a creeping behaviour below 5 km depth. The low-angle normal fault also shows a high degree of tectonic coupling with its main antithetic fault (the Gubbio fault), suggesting that creeping along the ATF may control the observed strain localization and the pattern of microseismic activity.


2020 ◽  
Author(s):  
J. Lee ◽  
et al.

<div>Figure 3. Layer A. Shaded relief map of the Gabbs Valley, Gillis, and Wassuk ranges, Nevada. Layer B. Simplified geologic map of the Gabbs Valley, Gillis, and Wassuk ranges. Sources of geologic mapping: Bingler (1978); Hardyman (1980); Stewart et al. (1981); Ekren and Byers (1985a, 1985b, 1986a, 1986b); Dilles (1992); Hoxey et al. (2020); this study. Layer C. Geographic names for major mountains, valleys, canyons, flats, washes, and lakes; fault names, and other labels. Layer D. Locations photographs (see Fig. 5), cross-section lines (see Fig. 6), and <sup>40</sup>Ar/<sup>39</sup>Ar sample locations with ages (see Table 1). Layers E–J. Southern paleovalley wall contacts and measured dextral offsets for paleovalley infilling units Obmg, Osp, Mrc, Mrl, and Mal, respectively. Layer I. Southern contact of unit Mlf and measured dextral offset. Layer K. Intersection line defined by normal fault–hanging-wall contact between units Mlf and Me and measured dextral offset. Maps, labels, and data sets are organized in a series of layers that may be viewed separately or in combination using the capabilities of the Acrobat (PDF) layering function (click “Layers” icon along vertical bar on left side of window for display of available layers; turn layers on or off by clicking the box that encompasses the layer label located within the gray box in the upper right part of the figure). Figure 3 is intended to be viewed at a width of 64 cm.<br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document