Required Improvements in the Use of Multiphase 2D Fluid Flow Models for Secondary Migration Assessment

Author(s):  
Ø. Sylta
2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


2019 ◽  
Vol 59 (2) ◽  
pp. 940
Author(s):  
Mark Reilly ◽  
Suzanne Hurter ◽  
Zsolt Hamerli ◽  
Claudio L. de Andrade Vieira Filho ◽  
Andrew LaCroix ◽  
...  

The stratigraphy of the Surat Basin, Queensland, has historically been sub-divided by formation and unit nomenclature with a few attempts by other authors to apply sequence stratigraphy to existing formation boundaries. At a local- to field-scale, lithostratigraphy may be able to represent stratigraphy well, but at regional-scale, lithostratigraphic units are likely to be diachronous. To date, this lithology-driven framework does not accurately reflect time relationships in the sub-surface. An entirely new integrated methodological approach, involving well tied seismic data and sequence stratigraphic well-to-well correlations compared with published zircon age dates, has been applied to hundreds of deep wells and shallower coal seam gas wells. This method sub-divides the Surat Basin stratigraphy into defendable 2nd order to 3rd order sequence stratigraphic cycles and has required the use of an alpha-numeric sequence stratigraphic nomenclature to adequately and systematically label potential time equivalent surfaces basin-wide. Correlation of wells is the first step in building models of aquifers and coal seam gas fields for numerical simulation of fluid flow, which is necessary for responsible resource management. Lithostratigraphic correlations will overestimate the extent and hydraulic connectedness of the strata of interest. The result may be fluid flow models that do not represent a realistic pressure footprint of the flow. The present sequence stratigraphic method more accurately reflects the disconnectedness of sub-surface coals and sandstones (aquifers) on a field-to-field scale, adjacent field-scale, and basin-wide scale. It forms the basis for improved and more representative modelling of the sub-surface.


2020 ◽  
Author(s):  
Maximilian O. Kottwitz ◽  
Anton A. Popov ◽  
Steffen Abe ◽  
Boris J. P. Kaus

<p>Finding an adequate bridge between direct and continuum modeling approaches has been the fundamental issue of upscaling fluid flow in rock masses. Typically, numerical simulations of direct fluid flow (e.g. Stokes or Lattice-Boltzmann) in fractured or porous media serve as small-scale building blocks for larger-scale continuum flow simulations (e.g. Darcy). For fractured rock masses, the discrete-fracture-network (DFN) modeling approach is often used as an initial step to upscale flow properties by parameterizing the permeability of each fracture with its hydraulic aperture and solving steady-state flow equations within the fracture system. However, numerical simulations of Stokes flow in small fracture networks (FN) indicate that, depending on the orientation of the applied pressure gradient, fluid flow tends to localize at places where fractures intersect. This effect causes discrepancies between direct and equivalent continuum flow modeling approaches, which ought to be taken into account when modeling flow at the network scale.</p><p>In this study, we compare direct flow simulations of small fracture networks to their continuum representation obtained with several techniques in order to find an upscaling approach that takes these intersection effects into account. Direct flow simulations are conducted by solving the Stokes equations in 3D using our open-source finite-difference software LaMEM. Continuum flow simulations are realized with a newly developed parallel finite-element code, which solves fully anisotropic 3D Darcy flow with specific permeability tensors for each voxel. The direct flow simulations serve as benchmarks to optimize the continuum flow models by comparing resulting permeabilities. We tested two different schemes to generate the equivalent continuum representation: </p><p>(1) Fully resolved isotropic permeability discretizations (fracture permeability is obtained from a refined cubic law) where voxel sizes are a fraction of the minimal hydraulic aperture of the FN or</p><p>(2) coarse anisotropic permeability discretizations (permeability tensors are rotated according to fracture orientation) with voxel sizes larger than the minimal hydraulic aperture of the FN.</p><p>We then assess different scenarios to incorporate the intersection effects by adding, averaging and/or multiplying the permeabilities of the intersecting fractures within intersection voxels. Preliminary results for scheme 1 suggest that a simple addition of both intersecting fracture permeabilities delivers the best fit to the results of the direct flow simulations, if the voxel size is about 68% of the minimal hydraulic aperture. Scheme 2 systematically underestimates the direct flow permeabilities by about 26%.</p>


Sign in / Sign up

Export Citation Format

Share Document