Keynote Presentation: The Role of Microseismic in Well Performance Evaluation: Improving Completions and Optimizing Well Spacing

Author(s):  
C. Cipolla
2016 ◽  
pp. 55-94
Author(s):  
Pier Luigi Marchini ◽  
Carlotta D'Este

The reporting of comprehensive income is becoming increasingly important. After the introduction of Other Comprehensive Income (OCI) reporting, as required by the 2007 IAS 1-revised, the IASB is currently seeking inputs from investors on the usefulness of unrealized gains and losses and on the role of comprehensive income. This circumstance is of particular relevance in code law countries, as local pre-IFRS accounting models influence financial statement preparers and users. This study aims at investigating the role played by unrealized gains and losses reporting on users' decision process, by examining the impact of OCI on the Italian listed companies RoE ratio and by surveying a sample of financial analysts, also content analysing their formal reports. The results show that the reporting of comprehensive income does not affect the financial statement users' decision process, although it statistically affects Italian listed entities' performance.


2021 ◽  
Author(s):  
Rohan Sakhardande ◽  
Deepak Devegowda

Abstract The analyses of parent-child well performance is a complex problem depending on the interplay between timing, completion design, formation properties, direct frac-hits and well spacing. Assessing the impact of well spacing on parent or child well performance is therefore challenging. A naïve approach that is purely observational does not control for completion design or formation properties and can compromise well spacing decisions and economics and perhaps, lead to non-intuitive results. By using concepts from causal inference in randomized clinical trials, we quantify the impact of well spacing decisions on parent and child well performance. The fundamental concept behind causal inference is that causality facilitates prediction; but being able to predict does not imply causality because of association between the variables. In this study, we work with a large dataset of over 3000 wells in a large oil-bearing province in Texas. The dataset includes several covariates such as completion design (proppant/fluid volumes, frac-stages, lateral length, cluster spacing, clusters/stage and others) and formation properties (mechanical and petrophysical properties) as well as downhole location. We evaluate the impact of well spacing on 6-month and 1-year cumulative oil in four groups associated with different ranges of parent-child spacing. By assessing the statistical balance between the covariates for both parent and child well groups (controlling for completion and formation properties), we estimate the causal impact of well spacing on parent and child well performance. We compare our analyses with the routine naïve approach that gives non-intuitive results. In each of the four groups associated with different ranges of parent-child well spacing, the causal workflow quantifies the production loss associated with the parent and child well. This degradation in performance is seen to decrease with increasing well spacing and we provide an optimal well spacing value for this specific multi-bench unconventional play that has been validated in the field. The naïve analyses based on simply assessing association or correlation, on the contrary, shows increasing child well degradation for increasing well spacing, which is simply not supported by the data. The routinely applied correlative analyses between the outcome (cumulative oil) and predictors (well spacing) fails simply because it does not control for variations in completion design over the years, nor does it account for variations in the formation properties. To our knowledge, there is no other paper in petroleum engineering literature that speaks of causal inference. This is a fundamental precept in medicine to assess drug efficacy by controlling for age, sex, habits and other covariates. The same workflow can easily be generalized to assess well spacing decisions and parent-child well performance across multi-generational completion designs and spatially variant formation properties.


2018 ◽  
Vol 66 (2) ◽  
pp. 377-422
Author(s):  
Chia-Hui Chen ◽  
Junichiro Ishida

2018 ◽  
Author(s):  
Thomas D.S. Sutton ◽  
Adam G. Clooney ◽  
Feargal J. Ryan ◽  
R. Paul Ross ◽  
Colin Hill

AbstractBackgroundThe viral component of microbial communities play a vital role in driving bacterial diversity, facilitating nutrient turnover and shaping community composition. Despite their importance, the vast majority of viral sequences are poorly annotated and share little or no homology to reference databases. As a result, investigation of the viral metagenome (virome) relies heavily on de novo assembly of short sequencing reads to recover compositional and functional information. Metagenomic assembly is particularly challenging for virome data, often resulting in fragmented assemblies and poor recovery of viral community members. Despite the essential role of assembly in virome analysis and difficulties posed by these data, current assembly comparisons have been limited to subsections of virome studies or bacterial datasets.DesignThis study presents the most comprehensive virome assembly comparison to date, featuring 16 metagenomic assembly approaches which have featured in human virome studies. Assemblers were assessed using four independent virome datasets, namely; simulated reads, two mock communities, viromes spiked with a known phage and human gut viromes.ResultsAssembly performance varied significantly across all test datasets, with SPAdes (meta) performing consistently well. Performance of MIRA and VICUNA varied, highlighting the importance of using a range of datasets when comparing assembly programs. It was also found that while some assemblers addressed the challenges of virome data better than others, all assemblers had limitations. Low read coverage and genomic repeats resulted in assemblies with poor genome recovery, high degrees of fragmentation and low accuracy contigs across all assemblers. These limitations must be considered when setting thresholds for downstream analysis and when drawing conclusions from virome data.


Sign in / Sign up

Export Citation Format

Share Document