Seismic Driven 3D Geomechanical Model of Lower Paleozoic Shale Formation (Eastern Europe) – Case Study

Author(s):  
M. Słota-Valim ◽  
K. Sowiżdżał ◽  
H.B. Jedrzejowska-Tyczkowska
Author(s):  
Nubia Aurora González Molano ◽  
José Alvarellos Iglesias ◽  
Pablo Enrique Vargas Mendoza ◽  
M. R. Lakshmikantha

Several wellbore instability problems have been encountered during drilling a shale formation in an offshore field, leading to the collapse of the main borehole and resulting in several sidetracks. In this study, an integrated 1D & 3D Geomechanical model was built for the field in order to investigate the major factors that control the instability problems from a Geomechanical point of view and to design an optimum mud window for planned wells in the field. Effect of bedding on wellbore stability was the most important factor to explain the observed drilling events. Optimized well paths for planned wells were proposed based on results of a sensitivity analysis of the effect of bedding orientation on wellbore stability. It has been observed that bedding exposed depends not only on well inclination but also on dip of the formation, attack angle, and azimuth.


2002 ◽  
Vol 52 (3) ◽  
pp. 327-345 ◽  
Author(s):  
T. Kravtseniouk

This paper shows the principal features of merger control in selected transition economies of Central and Eastern Europe (CEE), namely Hungary, Romania and Slovenia, by applying case study methodology. The presented findings are based on the analysis of Hungarian, Romanian and Slovenian competition law and merger rulings reached by the Competition Offices of these countries. A substantial part of the conclusions is drawn from a sample of 42 merger applications processed by the Office of Economic Competition of Hungary between 1994 and 2000. The results of empirical analysis demonstrate the considerable flexibility of merger control in the studied countries, its orientation towards the future of domestic markets and a close link with industrial policy. The paper also highlights the areas of interdependence of competition policy and transition and argues that merger control in the studied CEE countries may be regarded as currently adequate to the requirements imposed by transition.


Radiocarbon ◽  
2014 ◽  
Vol 56 (2) ◽  
pp. 733-741 ◽  
Author(s):  
Victor N Karmanov ◽  
Natalia E Zaretskaya ◽  
Alexander V Volokitin

A case study of the Neolithic comb ceramic site Pezmog 4 of the Kama culture presents a situation when results of radiocarbon dating change long-existing concepts concerning the development of archaeological events. Until the early 2000s, the chronology of the Kama culture, distributed mainly in the Kama and Vychegda River basins, has been based on comparative-typological analysis. Estimates of the age of this culture changed from the 3rd millennium BC in the 1950s to the 1st half of the 4th millennium BC by the 1990s. Research concerning the Pezmog 4 site in the central Vychegda River basin in 1999–2002 has abruptly changed this chronological understanding. The data obtained put the age of the early stage of Kama culture within the time range 5750–5620 cal BC and allowed us to propose the existence of another way of early pottery distribution in the forest zone of eastern Europe at the beginning of the 6th millennium BC. This innovation probably penetrated from the trans-Ural region.


2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


Sign in / Sign up

Export Citation Format

Share Document