Increasing the Efficiency of the Orenburg Oil and Gas Condensate Field Development Through the Introduction of an Intelligent Gas Injection Control System to Optimize the Gaslift Operation of Wells

2018 ◽  
Author(s):  
V.V. Ulyanov ◽  
E.A. Kibirev ◽  
M.T. Nukhaev ◽  
K.V. Rymarenko ◽  
V.S. Bak
2018 ◽  
pp. 11-20 ◽  
Author(s):  
Yu. V. Vasilev ◽  
D. A. Misyurev ◽  
A. V. Filatov

The authors created a geodynamical polygon on the Komsomolsk oil and gas condensate field to ensure the industrial safety of oil and gas production facilities. The aim of its creation is mul-tiple repeated observations of recent deformation processes. Analysis and interpretation of the results of geodynamical monitoring which includes class II leveling, satellite observations, radar interferometry, exploitation parameters of field development provided an opportunity to identify that the conditions for the formation of recent deformations of the earth’s surface is an anthropogenic factor. The authors identified the relationship between the formation of subsidence trough of the earth’s surface in the eastern part of the field with the dynamics of accumulated gas sampling and the fall of reservoir pressures along the main reservoir PK1 (Cenomanian stage).


1986 ◽  
Vol 4 (3) ◽  
pp. 317-321 ◽  
Author(s):  
M. E. Thompson ◽  
H. F. Dylla ◽  
P. H. LaMarche ◽  
N. D. Arnold ◽  
W. A. Rauch ◽  
...  

2020 ◽  
Vol 43 (3) ◽  
pp. 350-363
Author(s):  
L. A. Rapatskaya

The study aims to analyze the relationship between the redetermination of the complexity of the geological structure of the Verkhnechonsky oil and gas condensate field and the schedule adjustment of the field development plans. The paper uses the data on the exploration and production wells obtained from the pilot operation of JSC Verkhnechonskneftegaz, the geophysical work results, and the research materials publicly available in the press. The geological structure of the Verhnechonskoye oil and gas condensate field is unique in its complexity. This is due to the following factors: a combination of tectonic disturbances accompanied by the intrusion of traps; high mineralization of the reservoir water; sharp variability of the filtration and reservoir properties of the producing horizons by area and section due to the unevenness of the lithological composition of the reservoirs, their salinization and complete pinch-out. The development system of any field should take into account the peculiarities of the field’s tectonic and lithological-facies structure, and meet specific technical and economic requirements for drilling and operating wells. The complexity of the field structure requires a thorough selection of a development system that inevitably changes as the features of the field structure are studied, e.g. vertical drilling suggested at the initial stage of the filed development was shortly after replaced with inclined-horizontal drilling with the calculation of two options. Within the pilot operation project of the Verkhnechonsky field, JSC Verkhnechonskneftegaz has developed two variants of uniform grids of directional and horizontal wells with pattern flooding for the most explored deposits of the Verkhnechonsky horizon of blocks I and II. Because of the intensive processes of the reservoirs’ secondary salinization, the flooding method required a study of the reservoir water composition. However, the proposed drilling plan using a downhole engine and gamma-ray logging could not ensure the wellbores ducting through the most productive sections of the horizon, therefore, the flow rates of some directional and horizontal wells were not high enough. To increase the drilling efficiency, the specialists of the Drilling Department (JSC Verhnechonskneftegaz), together with the Department of Geology and Field Development (Schlumberger Ltd.), proposed a new methodology that increases the drilling efficiency by using a rotary-controlled system, logging-while-drilling, and geosteering. Thus, the development system of the Verkhnechonsky oils and gas condensate field was changing in the process of specifying the field’s geological structure, anisotropy reservoir properties, and the thickness of the producing horizons in size and cut, their salinization and pinch-out, and the composition of the reservoir waters.


2021 ◽  
Author(s):  
Sergei Igorevich Melnikov ◽  
Nikita Vladimirovich Vershigora ◽  
Alexander Alexandrovich Groo ◽  
Denis Sergeevich Grigorev ◽  
Pavel Yurievich Kiselev ◽  
...  

Abstract A decision to buy oil and gas assets requires a project evaluation (PE) aimed at integrated calculation of numerous possible scenarios of asset development, based on the uncertain resource values, variety of geological exploration program events, the most preferable decisions about the oil field development in the current economic conditions. The vast amount of calculations determined by the probabilistic nature of the PE and specific timeframes require optimization of the current approaches based on the balance between accuracy and time. This issue is particularly relevant for the evaluation and analysis of gas or gas-condensate field cluster as the profitability of the project can be concentrated in the asset integration into one production cluster. Such option as well as proposal to gather separate fields to the common infrastructure, sequence of fields development with different geological and physical characteristics, calculations of a large number of synergy options, etc. require the multi-disciplinary team to think outside the box while searching for a business case. Thus, this paper is aimed to improve current approaches and the current tools adaptation which will be used to drastically automate cross-functional probability estimate of gas field cluster with technical and economic justification of sustainable integrated solutions. The results were successfully validated within PE of several perspective gas condensate projects focused on the possibility of integration of the fields into a single cluster that creates additional value from the optimization of the project solutions (exploration, development strategy, gathering and transportation of hydrocarbons, monetization of the products) equal to tens of billions of rubles in a limited period of time.


2021 ◽  
Vol 11 (3) ◽  
pp. 1081-1091
Author(s):  
A. A. Feyzullayev ◽  
I. Lerche ◽  
I. M. Mamedova ◽  
A. G. Gojayev

AbstractThe scientific basis of the paper is the concept of renewability of oil and gas resources. In accordance with this concept, the purpose of this paper is to estimate the volumetric rate of natural replenishment of the reservoir with oil and gas using the example of long-developed Bibieybat oil and Garadag gas condensate fields in the South Caspian Basin (SCB). The methodological approach of this assessment is based on the authors' assumption that at the late stage of field development, the recoverable amount of hydrocarbon fluids is compensated by the amount of their natural inflow, as a result of which oil or gas production stabilizes. The analysis of the dynamics of hydrocarbon production for the Bibieybat oil field covered the period from 1935 to 2018, and for the Garadag gas condensate field from 1955 to 1979. The rate of natural oil replenishment calculated for 29 operating facilities of the Bibieybat field varies per well within 0.32–1.4 ton/day (averaging 0.76 ton/day) or about 277 ton/year. The rate of natural gas inflow at the Garadag gas condensate field is about 5.2 thousand m3/day per well.


2017 ◽  
Author(s):  
James Sheng ◽  
Lei Li ◽  
Yang Yu ◽  
Xingbang Meng ◽  
Sharanya Sharma ◽  
...  

2016 ◽  
Vol 838 ◽  
pp. 63-70
Author(s):  
Yury Vladimirovich Panov ◽  
Aleksey Nikolaevich Pronnikov ◽  
Krzysztof Lapinski

The article reviews issues of training process effectiveness increase by means of implementation and adaptation of the simulator of gas injection control system for petrol engine performed by applying LPG TECH Co technologies, when technical training relates to the use of alternative fuels on the motor transport.


Sign in / Sign up

Export Citation Format

Share Document