Optimizing the SkyTEM Airborne System to 6.25 Hz Base Frequency Operation for Increased Depth of Penetration

Author(s):  
P.G. Gisselø ◽  
N.S. Nyboe ◽  
E. Bäckström ◽  
P. Marsden
Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2021 ◽  
pp. 204141962110272
Author(s):  
Chaomei Meng ◽  
Dianyi Song ◽  
Qinghua Tan ◽  
Zhigang Jiang ◽  
Liangcai Cai ◽  
...  

Cellular steel-tube-confined concrete (CSTCC) targets show improved anti-penetration performance over single-cell STCC targets due to the confinement effect of surrounding cells on the impacted cell. Dynamic finite cylindrical cavity-expansion (FCCE) models including radial confinement effect were developed to predict the depth of penetration (DOP) for CSTCC targets normally penetrated by rigid sharp-nosed projectiles, and stiffness of radial confinement was achieved with the elastic solution of infinite cylindrical shell in Winkler medium. Steady responses of dynamic FCCE models were obtained on the assumption of incompressibility of concrete, failure of comminuted zone with Heok–Brown criterion and two possible response modes of the confined concrete in the impacted cell. Furthermore, a DOP model for CSTCC targets normally impacted by rigid projectiles was also proposed on the basis of the dynamic FCCE approximate model. Lastly, relevant penetration tests of CSTCC targets normally penetrated by 12.7 mm armor piecing projectile (APP) were taken as examples to validate the dynamic FCCE models and the corresponding DOP model. The results show that the DOP results based on dynamic FCCE model agree well with those of the CSTCC targets normally penetrated by rigid conical or other sharp-nosed projectiles.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Mahadzir Ishak ◽  
Nur Fakhriah Mohd Noordin ◽  
Luqman Hakim Ahmad Shah

The aim of this paper is to study the feasibility of welding dissimilar aluminum alloys AA6061 and AA7075 using different types of filler metals which are ER4043 and ER5356. The tungsten inert gas (TIG) welding method was used to butt joint these alloys. The effect of ER4043 (Si-rich) and ER5356 (Mg-rich) on weldability of the joint were studied through visual appearance, microstructures and hardness. It was found that, welding using filler ER5356 produced deeper penetration compared to filler ER4043. The depth of penetration obtained using filler ER5356 was 1.74 mm, while only 0.9 mm of penetration was obtained using ER4043. Microstructures at different zones of dissimilar TIG joints such as the fusion zone (FZ), the partially melted zone (PMZ) and the heat affected zone (HAZ) were identified. The grain size at FZ from filler ER5356 samples was finer compared to filler ER4043 which was 11.4 µm and 19.5 µm, respectively. The average hardness welding value of filler ER5356 samples was higher compared to filler ER4043 samples, which were 100HV and 86HV, respectively at HAZ of AA 6061, 110HV and 88HV, respectively at FZ, while 113HV and 85HV, respectively at HAZ of AA 7075. It can be concluded that TIG welding using the ER5356 filler yields better joint compared to ER4043.


Sign in / Sign up

Export Citation Format

Share Document