Modeling of Transient Multiphase Flow in a CO2 Injection Well with the Wellbore-Reservoir Coupled Simulator T2Well-ECO2M

Author(s):  
K. Strpic ◽  
A. Battistelli ◽  
S. Bonduà ◽  
V. Bortolotti ◽  
P. Macini ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1048
Author(s):  
Xipeng Guo ◽  
Joel Godinez ◽  
Nicholas J. Walla ◽  
Armin K. Silaen ◽  
Helmut Oltmann ◽  
...  

In a steel-refining ladle, the properties of manufactured steel can be notably degraded due to the presence of excessive inclusions. Stirring via gas injection through a porous plug is often used as part of the steel-refining process to reduce these inclusions. In this paper, 3D computational fluid dynamics (CFD) modeling is used to analyze transient multiphase flow and inclusion removal in a gas-stirred ladle. The effects of gas stirring with bubble-inclusion interaction are analyzed using the Euler–Euler approach for multiphase flow modeling, while the effects of inclusions aggregation and removal are modeled via a population balance model (PBM).


Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


2021 ◽  
Author(s):  
Changqing Yao ◽  
Hongquan Chen ◽  
Akhil Datta-Gupta ◽  
Sanjay Mawalkar ◽  
Srikanta Mishra ◽  
...  

Abstract Geologic CO2 sequestration and CO2 enhanced oil recovery (EOR) have received significant attention from the scientific community as a response to climate change from greenhouse gases. Safe and efficient management of a CO2 injection site requires spatio-temporal tracking of the CO2 plume in the reservoir during geologic sequestration. The goal of this paper is to develop robust modeling and monitoring technologies for imaging and visualization of the CO2 plume using routine pressure/temperature measurements. The streamline-based technology has proven to be effective and efficient for reconciling geologic models to various types of reservoir dynamic response. In this paper, we first extend the streamline-based data integration approach to incorporate distributed temperature sensor (DTS) data using the concept of thermal tracer travel time. Then, a hierarchical workflow composed of evolutionary and streamline methods is employed to jointly history match the DTS and pressure data. Finally, CO2 saturation and streamline maps are used to visualize the CO2 plume movement during the sequestration process. The power and utility of our approach are demonstrated using both synthetic and field applications. We first validate the streamline-based DTS data inversion using a synthetic example. Next, the hierarchical workflow is applied to a carbon sequestration project in a carbonate reef reservoir within the Northern Niagaran Pinnacle Reef Trend in Michigan, USA. The monitoring data set consists of distributed temperature sensing (DTS) data acquired at the injection well and a monitoring well, flowing bottom-hole pressure data at the injection well, and time-lapse pressure measurements at several locations along the monitoring well. The history matching results indicate that the CO2 movement is mostly restricted to the intended zones of injection which is consistent with an independent warmback analysis of the temperature data. The novelty of this work is the streamline-based history matching method for the DTS data and its field application to the Department of Engergy regional carbon sequestration project in Michigan.


2018 ◽  
Author(s):  
Kanat Karatayev ◽  
Beibit Bissakayev ◽  
Tamer Saada ◽  
Benjamin Madeley ◽  
Alberto Brancolini ◽  
...  

2018 ◽  
Author(s):  
Kanat Karatayev ◽  
Beibit Bissakayev ◽  
Tamer Saada ◽  
Benjamin Madeley ◽  
Alberto Brancolini ◽  
...  

2018 ◽  
Vol 852 ◽  
pp. 398-421
Author(s):  
Helena L. Kelly ◽  
Simon A. Mathias

An important attraction of saline formations for CO2 storage is that their high salinity renders their associated brine unlikely to be identified as a potential water resource in the future. However, high salinity can lead to dissolved salt precipitating around injection wells, resulting in loss of injectivity and well deterioration. Earlier numerical simulations have revealed that salt precipitation becomes more problematic at lower injection rates. This article presents a new similarity solution, which is used to study the relationship between capillary pressure and salt precipitation around CO2 injection wells in saline formations. Mathematical analysis reveals that the process is strongly controlled by a dimensionless capillary number, which represents the ratio of the CO2 injection rate to the product of the CO2 mobility and air-entry pressure of the porous medium. Low injection rates lead to low capillary numbers, which in turn are found to lead to large volume fractions of precipitated salt around the injection well. For one example studied, reducing the CO2 injection rate by 94 % led to a tenfold increase in the volume fraction of precipitated salt around the injection well.


2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.


Sign in / Sign up

Export Citation Format

Share Document