Ground Penetrating Radar Application to Assess The Warming Effect of The Road on Polygonal Peat Bogs in The Northern Part of The Pur-Taz Interfluve

Author(s):  
M.S. Sudakova ◽  
D.A. Kaverin ◽  
E.A. Babkina ◽  
E.M. Babkin ◽  
N.Yu. Fakashchuk ◽  
...  
2019 ◽  
Vol 8 (2) ◽  
pp. 35-40
Author(s):  
Ayu Safrida ◽  
Nazli Ismail ◽  
Marwan Marwan

Wilayah Aceh merupakan wilayah yang sering terjadi gempa bumi dengan skala besar. Salah satu gempa bumi dengan skala besar adalah Gempa Pidie Jaya yang terjadi pada 7 Desember 2016. Setelah terjadi gempa bumi, banyak terjadi pergerakan tanah yang ditemukan di area penelitian. Telah dilakukan serangkaian pengukuran menggunakan Ground Penetrating Radar (80 MHz) untuk mempelajari struktur bawah permukaan setelah terjadinya gempa bumi. Penelitian ini dilakukan di Desa Pangwa, Kecamatan Trienggadeng, Kabupaten Pidie Jaya. Pengukuran dilakukan di sepanjang jalan di Desa Pangwa yang melintasi dua jembatan. Pengukuran dilakukan pada 18 lintasan dengan panjang masing–masing lintasan sepanjang 50 m. Pengolahan data dilakukan dengan menggunakan software GRED. Berdasarkan hasil radargram, kita menemukan struktur pemukaan dangkal berupa patahan di tengah gambaran radargram pada lintasan 13 yang disebabkan oleh terjadinya gempa di Pidie Jaya. The Aceh region is an area of frequent large-scale earthquakes. One of the earthquakes with a large scale is Pidie Jaya Earthquake that occurred on December 7, 2016. After the earthquake, many ground movement evidences were found in the area. The ground penetrating radar (80 MHz) measurement is used to study subsurface structures after the earthquake. This research was conducted in Pangwa Village, Trienggadeng Subdistrict, Pidie Jaya District. Measurements were carried out along the road in Pangwa Village which crossed two bridges. Data measurements were made along 18 profiles with 50 m length of each profile. Data processing were done by using GRED software. Based on processed radargrams, we found a fault trace at the middle of the profile lane 13 caused by the newest earthquake in Pidie Jaya. Keywords: Ground Penetrating Radar, Subsurface structure, electromagnetic wave velocity


2017 ◽  
Vol 2 (20) ◽  
pp. 111-129
Author(s):  
Artur Plichta ◽  
Adam Piasecki

Within the road investments the very important element determining repeatedly the success of the whole project is an adequate information about the characteristics of the site, its load capacity, stability and the possible impact of geological characteristics that may interfere with subsequent service life, not only for the road surface itself, but also for the surrounded objects. The surface is incessantly influenced by geological characteristics, determining its durability and functional usefulness. The main aim of this paper is to answer the question how by the usage of modern technics for obtaining data it is possible to find a link confirming the characteristics of land on which the specific road projects are supposed to be carried out, or where these projects have already been accomplished, concerning their requirements with high accuracy of location and also the stability and durability of the ground. This article makes also an attempt to answer not only the question how to identify the construction of road surface, but also how to locate underground cavities, created or influenced by the flow of water, or due to geological structures characterized as an inconsistent ground. The results were supported with geophysical researches using GPR method, and also data collected with laser scanners.


Author(s):  
Gamil Alsharahi ◽  
Ahmed Faize ◽  
Carmen Maftei ◽  
Abdellah Driouach

Abstract The aim of this work is to study and explore the causes of the landslide in different locations using Ground Penetrating Radar (GPR) technology. GPR uses the electromagnetic method related the high-frequency pulse that used widely in various field. The experimental study focused on the investigation of the landslide in the road by GPR method with antenna 200 MHz. The landslides become serious problems and required various technique and methods to investigate it in several places. GPR measurements present a useful technique for studies and investigation of the problem. The GPR can be categorized in the first place as an experimental method surveys landslide depths were recognized at 1-10 m below the natural terrain level. The results obtained revealed the causes of landslides on the road.


2012 ◽  
Vol 594-597 ◽  
pp. 1363-1366
Author(s):  
Shui Ming He

Highway engineering quality is the lifeline of highway. Ground-penetrating radar is a new nondestructive testing technology of the road quality detection. This thesis takes advantage of ground-penetrating radar to analyze and discuss several related factors on highway nondestructive testing, for instance, the water content and compact degree of the base course, identification of cavity beneath the rigid pavement, and the differential settlement of the base course beneath the flexible pavement. Results of this research provide an excellent detection method for engineers and technicians.


2019 ◽  
Vol 3 (3) ◽  
pp. 150-159
Author(s):  
Nguyen Huu Tam

Thickness and moisture content of the asphalt surface are two important parameters, contributing to the assessment of road quality. Typically, these parameters are measured by drilling and sampling, causing structural damage, time loss and intermittent data acquisition. Ground Penetrating Radar is a geophysical method that uses electromagnetic waves at high frequency ranges to form pulses into the ground, so it has good resolution and accuracy. By measuring above the road surface, the data obtained can reveal the boundaries of shallow layers without causing destruction. Relying upon algorithms for wave impulse, we can calculate the value of earth wave velocity, characteristic of the wave propagation velocity in the first subclass. Therefore, the surveyor can accurately determine the thickness and moisture content of asphalt on the entire route, the accurate determination of layer thickness and defects of surface layer of plastic contributes to improving and restoring road quality. This paper presents the results of using 700 MHz and 1000 MHz frequencies to conduct field surveys and collect data, in order to verify the accuracy of processing algorithms, and evaluate the errors of initial calculation results. The use of Ground Penetrating Radar to measure the thickness of the plastic layer is a potenial method to increase the effectiveness of road quality appraisal in the future.


2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668315
Author(s):  
Shengli Li ◽  
Chaoqun Wang ◽  
Panxu Sun ◽  
Guangming Wu ◽  
Dongwei Wang

Phenomenon of concealed cracks is one of the familiar failures in the road base. Accurate concealed crack localization of the road base using ground penetrating radar still suffers from some limitations. To accurately locate the concealed cracks in the road base, an effective concealed crack localization method based on ground penetrating radar is proposed in this article: first, continuous ground penetrating radar scanning and manual point-by-point detection are performed to determine the location of the concealed crack roughly; then the ground penetrating radar–based ellipse method and an improved data processor based on MATLAB are used for processing the data to determine the accurate location of the concealed crack. The proposed method is experimentally validated using a rectangle concrete block with a concealed crack, and the results of the proposed method are compared with that of the previous method. All results indicate that the proposed method can be used to locate concealed cracks fast and well; moreover, the localization accuracy of the proposed method is obviously higher than the previous method; all these lay a good foundation for engineering applications.


2018 ◽  
Vol 10 (0) ◽  
pp. 1-5
Author(s):  
Andrius Baltrušaitis ◽  
Audrius Vaitkus

The optimum density and air-voids content of asphalt pavement layers are among the main indicators of the durability of asphalt road pavement. The asphalt pavement with insufficient density is less resistant to traffic loading and the damaging effects caused by water. Air-voids ensure the durability of asphalt pavement and the accumulation of free bitumen during a period of hot weather. At present, the main ways to control the quality of compaction and the content of air-voids is to drill core specimens and test them in the laboratory. This method is expensive, it damages the road surface, and the quality of asphalt pavement is verified only at several points. With the rapid development of new technologies, it is necessary to evaluate and to apply innovative non-destructive methods, allowing us to determine the qualitative characteristics of asphalt pavement across the entire length of the road without causing the damage to the road surface and at lower costs. This article describes the use of Ground Penetrating Radar to determine asphalt pavement density and air-voids content provides an overview of global practices and feasibility analysis on the application of Ground Penetrating Radar on the roads of Lithuanian. Santrauka Asfalto dangos sluoksnių optimalus tankis ir oro tuštymių kiekis yra vieni iš pagrindinių dangos ilgaamžiškumo rodiklių. Nepakankamo tankio danga yra mažiau atspari automobilių eismo apkrovoms ir žalingam vandens poveikiui. Oro tuštymės užtikrina dangos ilgaamžiškumą ir laisvojo bitumo akumuliavimą karštuoju metų laikotarpiu. Šiuo metu pagrindinis būdas kontroliuoti sutankinimą ir oro tuštymių kiekį yra gręžti kernus ir juos bandyti laboratorijoje. Šis metodas yra brangus, gadinama kelio danga ir asfalto dangos kokybė patikrinama tik keliuose taškuose. Sparčiai vystantis technologijoms būtina įvertinti ir taikyti inovatyvius neardančiuosius metodus, leidžiančius kokybinius asfalto dangos rodiklius nustatyti neardant dangos, išilgai viso kelio ir mažesnėmis sąnaudomis. Šiame straipsnyje pateikta georadaro (angl. Ground Penetrating Radar) taikymo asfalto dangai sutankinti ir oro tuštymių kiekiui nustatyti pasaulinės praktikos apžvalga ir panaudojimo Lietuvos automobilių keliuose galimybių analizė.


Sign in / Sign up

Export Citation Format

Share Document