The Role of Entomopathogenic Nematodes as Biological Control Agents of Insect Pests, with Emphasis on the History of Their Mass Culturing andin vivoProduction

2014 ◽  
Vol 22 (2) ◽  
pp. 235-249 ◽  
Author(s):  
C. van Zyl ◽  
A.P. Malan
2019 ◽  
Vol 55 (No. 4) ◽  
pp. 242-253 ◽  
Author(s):  
Anamarija Jagodič ◽  
Stanislav Trdan ◽  
Žiga Laznik

Plants under herbivore attack emit mixtures of volatiles that can attract the natural enemies of the herbivores. Entomopathogenic nematodes (EPNs) are organisms that can be used in the biological control of insect pests. Recent studies have shown that the movement of EPNs is associated with the detection of chemical stimuli from the environment. To date, several compounds that are responsible for the mediation in below ground multitrophic interactions have been identified. In the review, we discuss the use of EPNs in agriculture, the role of belowground volatiles and their use in plant protection programmes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camila C. Filgueiras ◽  
Denis S. Willett

AbstractEntomopathogenic nematodes are typically considered lethal parasites of insect hosts. Indeed they are employed as such for biological control of insect pests. The effects of exposure to entomopathogenic nematodes are not strictly limited to mortality, however. Here we explore non-lethal effects of exposure to entomopathogenic nematodes by introducing the relatively non-susceptible pupal stage of Delia antiqua to thirteen different strains. We specifically chose to inoculate the pupal stage because it tends to be more resistant to infection, yet resides in the soil where it could come into contact with EPN biological control agents. We find that there is no significant mortality at the pupal stage, but that there are a host of strain-dependent non-lethal effects during and after the transition to adulthood including altered developmental times and changes in risk of death compared to controls. We also find that exposure to specific strains can reduce risk of mortality. These results emphasize the strain-dependent nature of entomopathogenic nematode infection and highlight the positive and negative ramifications for non-lethal effects for biological control of insect pests. Our work emphasizes the need for strain-specific screening of biological control agents before wide-spread adoption.


2021 ◽  
Vol 56 (1) ◽  
pp. 12-23
Author(s):  
Diego Treviño-Cueto ◽  
Sergei A. Subbotin ◽  
Sergio R. Sanchez-Peña

Abstract Entomopathogenic nematodes (EPNs) are widely used agents of biological control, mainly targeting soil-inhabiting insect pests. Reports indicate that these terrestrial EPNs are also able to infect the aquatic larvae of mosquitoes. We isolated EPN strains (Heterorhabditis bacteriophora Poinar and Steinernema carpocapsae [Weiser]) from local soils at Saltillo, Coahuila state, Mexico. EPNs from these strains were produced in the laboratory in yellow mealworm (Tenebrio molitor L.) larvae, and their pathogenicity as infective juveniles (IJs) was tested against larvae of the yellow fever mosquito Aedes aegypti (L.) Third- and fourth-instar mosquito larvae were exposed to four concentrations of IJs (25, 50, 100, and 200 IJ/larva) of five strains of local EPNs in laboratory assays. All strains of EPN caused lethal infections in larvae (3–100%); in particular, strain M5 of S. carpocapsae caused 100% mortality at the 200 IJ/larva concentration, with a median lethal concentration (LC50) of 42 IJ/larva (LC90 = 91 IJ/larva). Strain M18 of H. bacteriophora caused 73% mortality at 200 IJ/larva, with an LC50 = 72 and LC90 = 319 IJ/larva. IJs were produced by all strains in mosquito larvae, with a range of 66–239 IJ/mosquito larva (inoculated at 100 IJ/larva) across strains, suggesting that horizontal transmission might occur in the field. This represents the first report of native EPN strains from Mexico exhibiting pathogenicity against mosquito larvae. Native EPN strains should be further evaluated as potential biological control agents in mosquito management.


2014 ◽  
Vol 67 ◽  
pp. 204-212 ◽  
Author(s):  
M.R. McNeill ◽  
N.K. Richards ◽  
J.A. White ◽  
A. Laugraud

Bacterial endosymbionts are common among arthropods including many important pest and beneficial insect species These symbionts provide either an obligate function performing essential reproductive or nutritive roles or are facultative influencing the ecology and evolution of their hosts in ways that are likely to impact biological control This includes resistance against parasitoids and modification to parasitoid fecundity Recent research has shown that endosymbionts are associated with exotic weevil pests found in New Zealand pasture including the clover root weevil Sitona obsoletus (S lepidus) The role of endosymbionts in insect biology and impacts on biological control is reviewed For New Zealand plant protection scientists endosymbiont research capability will provide important insights into interactions among insect pests plant hosts and biological control agents which may provide management opportunities for existing and future pest incursions in New Zealand


2017 ◽  
Vol 38 (02) ◽  
Author(s):  
Gitanjali Devi ◽  
Dhrubajyoti Nath

Biological control agents have become increasingly important component in integrated pest management programme. Entomopathogenic nematodes are effective biological control agents for many important insect pests of vegetable crops. Therefore entomopathogenic nematodes are gaining attention in the field of biocontrol research worldwide. With the development and improvement of isolation and identification technique many novel species and strains have been utilized for management of several insect pests. This review aims to explore the potentiality of entomopathogenic nematode species against economically important insect pest of vegetables in India as well as in other countries.


Author(s):  
R.A. Prestidge ◽  
A.J. Popay ◽  
O.J-P Ball

Although the role of the endophytic fungus Acremonium lolii in protecting the host plant from attack by insect pests, particularly Argentine stem weevil (Listronotus bonariensis), is often described in terms of plant resistance, it is a case of classical biological control. Endophytes in commercially available perennial ryegrass cultivars are acting as biological control agents against at least four pest species in New Zealand. Generally, endophyte adversely affects insect stages that feed on the above-ground parts of the plant, particularly those stages that feed near the base of the plant. It is apparent from insect feeding tests that there is no one universal anti-insect metabolite that will adversely affect all pest populations. It is therefore likely that an endophytelgrass combination that produces a cocktail of metabolites at low concentrations may be more useful than a combination that produces a very narrow suite of metabolites. Keywords: Acremonium spp., Listronotus bonariensis, Heteronychus arator, Costelytra zealandica, Wiseana spp., biological control, endophyte


Entomophaga ◽  
1995 ◽  
Vol 40 (3-4) ◽  
pp. 427-440 ◽  
Author(s):  
S. R. Ripa ◽  
P. S. Rojas ◽  
G. Velasco

Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 117 ◽  
Author(s):  
Marion Javal ◽  
John S. Terblanche ◽  
Desmond E. Conlong ◽  
Antoinette P. Malan

Cacosceles newmannii (Coleoptera: Cerambycidae) is an emerging pest of sugarcane in South Africa. The larvae of this cerambycid beetle live within the sugarcane stalk and drill galleries that considerably reduce sugar production. To provide an alternative to chemical control, entomopathogenic nematodes and fungus were investigated as potential biological control agents to be used in an integrated pest management system. The nematodes Steinernema yirgalemense, S. jeffreyense, Heterorhabditis indica, and different concentrations of the fungus Metarhizium pinghaense were screened for efficacy (i.e., mortality rate) against larvae of C. newmannii. The different biocontrol agents used, revealed a low level of pathogenicity to C. newmannii larvae, when compared to control treatments.


2016 ◽  
Vol 148 (S1) ◽  
pp. S239-S269 ◽  
Author(s):  
Chris J.K. MacQuarrie ◽  
D.B. Lyons ◽  
M. Lukas Seehausen ◽  
Sandy M. Smith

AbstractBiological control has been an important tactic in the management of Canadian forests for over a century, but one that has had varied success. Here, we review the history of biological control programmes using vertebrate and invertebrate parasitoids and predators against insects in Canadian forests. Since roughly 1882, 41 insect species have been the target of biological control, with approximately equal numbers of both native and non-native species targeted. A total of 161 species of biological control agents have been released in Canadian forests, spanning most major orders of insects, as well as mites and mammals. Biological control has resulted in the successful suppression of nine pest species, and aided in the control of an additional six species. In this review, we outline the chronological history of major projects across Canadian forests, focussing on those that have had significant influence for the development of biological control. The historical data clearly illustrate a rise and fall in the use of biological control as a tactic for managing forest pests, from its dominance in the 1940s and 1950s to its current low level. The strategic implementation of these biological control programmes, their degree of success, and the challenges faced are discussed, along with the discipline’s shifting relationship to basic science and the environmental viewpoints surrounding its use.


Sign in / Sign up

Export Citation Format

Share Document