Floral visitation patterns of bees during spring in Constantine, Algeria

2007 ◽  
Vol 15 (1) ◽  
pp. 209-213 ◽  
Author(s):  
K. Louadi ◽  
K. Benachour ◽  
S. Berchi
Keyword(s):  
2021 ◽  
Vol 135 (2) ◽  
pp. 186-191
Author(s):  
Paul M. Catling ◽  
Brenda Kostiuk ◽  
Jeffrey H. Skevington

Alaska Wild Rhubarb (Koenigia alaskana var. glabrescens; Polygonaceae) is a native Arctic, subarctic, and alpine plant of northwestern North America. Although the plant has some economic and ecological importance, its biology is poorly known. At 11 sites in the northeast corner of its range in Northwest Territories, we found that 87% of its floral visitors were flies, mostly Syrphidae, a diverse family known to be important pollinators. Insects visiting consecutive flowers on different plants and, thus, likely effecting pollination were also flies (78.6%) and also mostly Syrphidae (72.7%) followed by Hymenoptera (20%). Although syrphids were the dominant potential pollinators at most sites, there was some variation among sites. Our results provide quantitative support for pollinator diversity and the major role of Syrphidae in pollination of Alaska Wild Rhubarb. We suggest that pollination is not a limiting factor in this plant’s spread, nor its rare and local occurrence and restricted distribution, because the majority of its pollinators are widespread.


2011 ◽  
Vol 83 (3) ◽  
pp. 1007-1020 ◽  
Author(s):  
Maria Gabriela G. Camargo ◽  
Regina M. Souza ◽  
Paula Reys ◽  
Leonor P.C. Morellato

The Brazilian cerrado has undergone an intense process of fragmentation, which leads to an increase in the number of remnants exposed to edge effects and associated changes on environmental conditions that may affect the phenology of plants. This study aimed to verify whether the reproductive phenology of Xylopia aromatica (Lam.) Mart. (Annonaceae) differs under different light conditions in a cerrado sensu stricto (a woody savanna) of southeastern Brazil. We compared the reproductive phenology of X. aromatica trees distributed on east and south cardinal faces of the cerrado during monthly observations, from January 2005 to December 2008. The east face had a higher light incidence, higher temperatures and canopy openness in relation to south face. X. aromatica showed seasonal reproduction at both faces of the cerrado, but the percentage of individuals, the synchrony and duration of phenophases were higher at the east face. The study demonstrated the influence of the environmental conditions associated to the cardinal orientation of the cerrado faces on the phenological pattern of X. aromatica. Similar responses may be observed for other species, ultimately affecting patterns of floral visitation and fruit production, which reinforces the importance of considering the cardinal direction in studies of edge effects and fragmentation.


Ecology ◽  
2018 ◽  
Vol 99 (6) ◽  
pp. 1480-1489 ◽  
Author(s):  
Jonathan A. Bennett ◽  
James F. Cahill

2018 ◽  
Vol 285 (1880) ◽  
pp. 20180635 ◽  
Author(s):  
Matthew H. Koski ◽  
Jennifer L. Ison ◽  
Ashley Padilla ◽  
Angela Q. Pham ◽  
Laura F. Galloway

Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant–pollinator mutualism, acting as functional parasites to C. americana . It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce.


Zootaxa ◽  
2020 ◽  
Vol 4772 (1) ◽  
pp. 89-110
Author(s):  
MATTHEW R. MOORE ◽  
STEFANI M. HARRISON ◽  
RONALD D. CAVE ◽  
MARC A. BRANHAM

The speciose genus Cyclocephala Dejean (Coleoptera: Scarabaeidae: Dynastinae: Cyclocephalini) has attracted research attention due to their diversity, agroeconomic importance, and floral visitation habits. Uniquely among Cyclocephala species, C. mafaffa Burmeister and C. deceptor (Casey), two nearly identical species, are diagnosed by a pronotal character: beaded or not beaded basal pronotal margin. We evaluated these morphological species hypotheses with a phylogenetic analysis of 12S and COI, neighbor-joining analysis, and several single-locus species delimitation procedures (automatic barcode gap analysis and three Poisson tree processes analyses). Together, these analyses supported the species concepts for C. deceptor and C. mafaffa. Delimitation procedures supported several distinct molecular operational taxonomic units among these taxa. We consider the separation of C. deceptor and C. mafaffa to be valid. We conservatively synonymize the West Indian subspecies C. mafaffa grandis Burmeister under C. mafaffa and offer a discussion on subspecific concepts in Cyclocephalini. We designate the lectotype of Stigmalia deficiens Casey. Implications of this study for other geographically widespread cyclocephalines or species with variable pronotal morphology are discussed. 


Oecologia ◽  
2013 ◽  
Vol 174 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Katherine E. LeVan ◽  
Keng-Lou James Hung ◽  
Kyle R. McCann ◽  
John T. Ludka ◽  
David A. Holway

2015 ◽  
Vol 157 (2) ◽  
pp. 573-581 ◽  
Author(s):  
Jesper Sonne ◽  
Peter Kyvsgaard ◽  
Pietro Kiyoshi Maruyama ◽  
Jeferson Vizentin-Bugoni ◽  
Jeff Ollerton ◽  
...  

1987 ◽  
Vol 119 (7-8) ◽  
pp. 735-745 ◽  
Author(s):  
Cynthia D. Scott-Dupree ◽  
Mark L. Winston

AbstractWild bee pollinators were collected in tree-fruit orchards and uncultivated habitats in the Okanagan Valley. Higher abundance and diversity of wild bee pollinators were found at uncultivated sites than on tree-fruit crops. Wild bees were not abundant enough in orchard habitats to provide adequate tree-fruit pollination. Variable flower visitation patterns by polylectic bees in orchard and uncultivated habitats make it difficult to predict floral visitation patterns. Therefore, orchardists cannot rely on a substantial and predictable contribution to pollination of fruit crops by wild bee species. Research into the use of wild bees as managed pollinators for tree-fruit crops in the Okanagan Valley may have potential. Future studies should consider three wild bee species collected in Okanagan Valley orchards, Bombus terricola occidentalis Greene, Bombus bifarius nearcticus Handlirsch, and Osmia lignaria propinqua Cresson, for pollination management.


2021 ◽  
Author(s):  
Francisco Garcia Bulle Bueno ◽  
Liam Kendall ◽  
Denise Araujo Alves ◽  
Manuel Lequerica Tamara ◽  
Tim Heard ◽  
...  

AbstractBees play a key role in maintaining healthy terrestrial ecosystems by pollinating plants. Stingless bees (Apidae: Meliponini) are a diverse clade of social bees (>500 species) with a pantropical distribution spanning South and Central America, Africa, India and Austral-Asia. They are garnering increasing attention as commercially-beneficial pollinators of some crops, yet their contribution to the pollination of native plants in the tropics and subtropics remains poorly understood. Here we conduct for the first time a global review of the plants visited by stingless bees. We compile a database of reported associations (flower visits) between stingless bees and plants, from studies that have made either direct observations of foraging bees or analysed the pollen stored in nests. Worldwide, we find stingless bees have been reported to visit the flowers of plants from at least 215 different families and 1434 genera, with frequently reported interactions for many of the tropic’s most species-diverse plant families including Fabaceae, Asteraceae, Rubiaceae, Poaceae, Euphorbiaceae, Myrtaceae, Malvaceae, Arecaceae, Solanaceae, and Anacardiaceae. The stingless bee fauna of each of three major biogeographic regions (Neotropical, Afrotropical and Indo-Malayan-Australasian) were frequent visitors of many of the same plant families, however we detected differences in the proportional use of plant families by the stingless bees of the Indo-Malayan-Australasian and Neotropical regions, likely reflecting differences in the available flora of those regions. Stingless bees in all regions visit a range of exotic species in their preferred plant families (crops, ornamental plants and weeds), in addition to native plants. Although most reports of floral visitation on wild plants do not confirm effective pollen transfer, it is likely that stingless bees make at least some contribution to pollination for the majority of plants they visit. In all, our database supports the view that stingless bees play an important role in the ecosystems of the global tropics and subtropics as pollinators of an exceptionally large and diverse number of plants. This database also highlights important gaps in our knowledge of stingless bee resource use and should benefit future efforts to understand stingless bee-plant interactions.


Sign in / Sign up

Export Citation Format

Share Document