Relation between mass and angular momentum for a covariant charge distribution

2019 ◽  
Vol 32 (4) ◽  
pp. 477-479
Author(s):  
John French

A relation is found between the proper time derivative of mass and angular momentum for a covariant charge distribution. This is based on the rest frame equations of motion of a relativistic rotating charge distribution.

2002 ◽  
Vol 11 (05) ◽  
pp. 781-787 ◽  
Author(s):  
LORENZO IORIO

The well known general relativistic Lense–Thirring drag of the orbit of a test particle in the stationary field of a central slowly rotating body is generated, in the weak-field and slow-motion approximation of General Relativity, by a gravitomagnetic Lorentz-like acceleration in the equations of motion of the test particle. In it the gravitomagnetic field is due to the central body's angular momentum supposed to be constant. In the context of the gravitational analogue of the Larmor theorem, such acceleration looks like a Coriolis inertial term in an accelerated frame. In this paper the effect of the variation in time of the central body's angular momentum on the orbit of a test mass is considered. It can be shown that it is analogue to the inertial acceleration due to the time derivative of the angular velocity vector of an accelerated frame. The possibility of detecting such effect in the gravitational field of the Earth with LAGEOS-like satellites is investigated. It turns out that the orbital effects are far too small to be measured.


It is deduced from the conservation of the energy -momentum tensor that if the flow of energy and momentum into a tube surrounding a time-like world-line, on which the field is singular, become singular as the size of the tube is contracted to zero, then the singular terms are necessarily perfect differentials of quantities on the world-line with respect to the proper time along the world-line. The same can be proved of any other tensor, as, for example, the angular-momentum tensor, which is conserved. It is proved from this that for any point -particle whatever having charge, spin or other properties, which need not be specified, it is always possible to deduce exact equations of motion which are finite. It is proved further that if the energy-momentum tensor is altered by the addition of ∂ K μvσ /∂x σ , where K μvσ is any tensor antisymmetric in v and σ , then the equations of motion are unaltered, but it is possible to choose K μvσ in such a way as to make the flow of energy and momentum into a given tube non-singular.


1998 ◽  
Vol 65 (3) ◽  
pp. 719-726 ◽  
Author(s):  
S. Djerassi

This paper is the third in a trilogy dealing with simple, nonholonomic systems which, while in motion, change their number of degrees-of-freedom (defined as the number of independent generalized speeds required to describe the motion in question). The first of the trilogy introduced the theory underlying the dynamical equations of motion of such systems. The second dealt with the evaluation of noncontributing forces and of noncontributing impulses during such motion. This paper deals with the linear momentum, angular momentum, and mechanical energy of these systems. Specifically, expressions for changes in these quantities during imposition and removal of constraints are formulated in terms of the associated changes in the generalized speeds.


Author(s):  
João L. Costa ◽  
José Natário

We study the free boundary problem for the ‘hard phase’ material introduced by Christodoulou in (Christodoulou 1995 Arch. Ration. Mech. Anal. 130 , 343–400), both for rods in (1 + 1)-dimensional Minkowski space–time and for spherically symmetric balls in (3 + 1)-dimensional Minkowski space–time. Unlike Christodoulou, we do not consider a ‘soft phase’, and so we regard this material as an elastic medium, capable of both compression and stretching. We prove that shocks must be null hypersurfaces, and derive the conditions to be satisfied at a free boundary. We solve the equations of motion of the rods explicitly, and we prove existence of solutions to the equations of motion of the spherically symmetric balls for an arbitrarily long (but finite) time, given initial conditions sufficiently close to those for the relaxed ball at rest. In both cases we find that the solutions contain shocks if and only if the pressure or its time derivative do not vanish at the free boundary initially. These shocks interact with the free boundary, causing it to lose regularity.


1963 ◽  
Vol 41 (12) ◽  
pp. 2241-2251 ◽  
Author(s):  
M. G. Calkin

The equations of motion of an inviscid, infinitely conducting fluid in an electromagnetic field are transformed into a form suitable for an action principle. An action principle from which these equations may be derived is found. The conservation laws follow from invariance properties of the action. The space–time invariances lead to the conservation of momentum, energy, angular momentum, and center of mass, while the gauge invariances lead to conservation of mass, a generalization of the Helmholtz vortex theorem of hydrodyanmics, and the conservation of the volume integrals of A∙B and v∙B, where A is the vector potential, B is the magnetic induction, and v is the fluid velocity.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450144 ◽  
Author(s):  
Yu Zhang ◽  
Jin-Ling Geng ◽  
En-Kun Li

In this paper, we study the orbital dynamics of the gravitational field of stringy black holes by analyzing the effective potential and the phase plane diagram. By solving the equation of Lagrangian, the general relativistic equations of motion in the gravitational field of stringy black holes are given. It is easy to find that the motion of test particles depends on the energy and angular momentum of the test particles. Using the phase plane analysis method and combining the conditions of the stability, we discuss different types of the test particles' orbits in the gravitational field of stringy black holes. We get the innermost stable circular orbit which occurs at r min = 5.47422 and when the angular momentum b ≤ 4.3887 the test particles will fall into the black hole.


Author(s):  
Z J Goraj

In this paper the advantages and weak points of the analytical and vectorial methods of the derivation of equations of motion for discrete systems are considered. The analytical method is discussed especially with respect to Boltzmann-Hamel equations, as generalized Lagrange equations. The vectorial method is analysed with respect to the momentum equation and to the generalized angular momentum equation about an arbitrary reference point, moving in an arbitrary manner. It is concluded that, for the systems with complicated geometry of motion and a large number of degrees of freedom, the vectorial method can be more effective than the analytical method. The combination of the analytical and vectorial methods helps to verify the equations of motion and to avoid errors, especially in the case of systems with rather complicated geometry.


Author(s):  
Myron Mathisson

The author's general variational method is applied to the case of a particle for which second moments are important but third and higher moments are negligible. Equations of motion are obtained for the angular momentum and for the centre of mass, equations (12·35) and (12·41), with arbitrary external forces X.The angular forces are then calculated for a charged particle with electric and magnetic moments moving in a general electromagnetic field, on the assumption that the effect of a certain part of the energy tensor, Tiii of (15·17), is negligible. This leads to the equations of angular motion, (17·13), from which it is inferred that, in order that the magnitude of the angular momentum may be integrable, the angular momentum, electric and magnetic moments must all be parallel in a frame of reference in which the particle is instantaneously at rest.The linear forces are then calculated for the case of no electric moment, leading to the equations for linear motion (18·10). From these it is inferred that, in order that the mass may be integrable, the ratio of the magnetic moment to the angular momentum must be constant.


1984 ◽  
Vol 62 (10) ◽  
pp. 943-947
Author(s):  
Bruce Hoeneisen

We consider particles with mass, charge, intrinsic magnetic and electric dipole moments, and intrinsic angular momentum in interaction with a classical electromagnetic field. From this action we derive the equations of motion of the position and intrinsic angular momentum of the particle including the radiation reaction, the wave equations of the fields, the current density, and the energy-momentum and angular momentum of the system. The theory is covariant with respect to the general Lorentz group, is gauge invariant, and contains no divergent integrals.


Sign in / Sign up

Export Citation Format

Share Document