scholarly journals Enamel bonding of self-etching and phosphoric acid-etching orthodontic adhesives in simulated clinical conditions: Debonding force and enamel surface

2009 ◽  
Vol 28 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Shinya HORIUCH ◽  
Kazuyuki KANEKO ◽  
Hiroko MORI ◽  
Emi KAWAKAMI ◽  
Takashi TSUKAHARA ◽  
...  
2017 ◽  
Vol 68 (4) ◽  
pp. 781-785
Author(s):  
Alice Murariu ◽  
Mirela Zaltariov ◽  
Lavinia Vasiliu ◽  
Adriana Balan ◽  
Carmen Savin ◽  
...  

The acid etching procedure represents a procedure that increases the bond strength between the etched enamel and the composite resin. The aim of this study was to evaluate the effect of ortho-phosphoric acid 37% on the morphology and composition of the enamel surface. The surfaces of four extracted teeth (two incisors and two premolars) were etched with 37% ortho-phosphoric acid solution for 15 seconds. The teeth were examined by ATR-FTIR spectroscopy and SEM microscopy in order to determine the degree of the enamel demineralization. A major change on teeth composition and morphology has been found. The results are discussed and compared with those of the effects of different concentrations of bleaching agent (carbamide peroxide) on the enamel surface. Etching with 37% ortho-phosphoric acid caused structural and morphological changes to the dental enamel surfaces.


2011 ◽  
Vol 36 (5) ◽  
pp. 563-566 ◽  
Author(s):  
M Özcan ◽  
E Salihoğlu-Yener

SUMMARY This clinical report describes a repair protocol for cusp fracture of a failed amalgam-dentin complex. A maxillary right first premolar with an amalgam restoration presented a buccal cusp fracture. Chairside repair has been undertaken by conditioning the existing amalgam restoration with silica coating (30 μm CoJet®-Sand), phosphoric acid etching the beveled enamel surface, priming dentin, and application of a bonding agent on both enamel and dentin. Thereafter, the amalgam was silanized (ESPE®-Sil), and opaque resin was applied and polymerized to mask the amalgam. The fractured buccal cusp was modeled using resin composite (Clearfil Photo Posterior) and photo-polymerized. Finally, the amalgam was refinished and refurbished and the composite was finished and polished.


2015 ◽  
Vol 20 (4) ◽  
pp. 51-56 ◽  
Author(s):  
João Paulo Fragomeni Stella ◽  
Andrea Becker Oliveira ◽  
Lincoln Issamu Nojima ◽  
Mariana Marquezan

OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding.METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%).RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased.CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface.


2020 ◽  
Vol 8 (3) ◽  
pp. 257 ◽  
Author(s):  
Jinman Lv ◽  
Binbin Hong ◽  
Yang Tan ◽  
Feng Chen ◽  
Javier Rodríguez Vázquez de Aldana ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2902
Author(s):  
Phoebe Burrer ◽  
Hoang Dang ◽  
Matej Par ◽  
Thomas Attin ◽  
Tobias T. Tauböck

This study investigated the effect of over-etching and prolonged application time of a universal adhesive on dentin bond strength. Ninety extracted human molars were ground to dentin and randomly allocated into nine groups (G1–9; n = 10 per group), according to the following acid etching and adhesive application times. In the control group (G1), phosphoric acid etching was performed for 15 s followed by application of the universal adhesive Scotchbond Universal (3M) for 20 s, as per manufacturer’s instructions. In groups G2–5, both the etching and adhesive application times were either halved, doubled, quadrupled, or increased eightfold. In groups G6–9, etching times remained the same as in G2–5 (7.5 s, 30 s, 60 s, and 120 s, respectively), but the adhesive application time was set at 20 s as in the control group (G1). Specimens were then restored with a nanofilled composite material and subjected to microtensile bond strength testing. Bond strength data were statistically analyzed by ANOVA and Tukey’s post-hoc tests (α = 0.05). The relationship of bond strength with etching and adhesive application time was examined using linear regression analysis. Treatment of dentin with halved phosphoric acid etching and adhesive application times (G2) resulted in a significant bond strength decrease compared to the control group (G1) and all other test groups, including the group with halved acid etching, but 20 s of adhesive application time (G6). No significant differences in bond strength were found for groups with multiplied etching times and an adhesive application time of 20 s or more, when compared to the control group (G1). In conclusion, a universal adhesive application time of at least 20 s is recommended when bonding to over-etched dentin.


Sign in / Sign up

Export Citation Format

Share Document