INCUBATION TYPE PLANAR PATCH CLAMP AS A NEW POTENTIAL TECHNOLOGY FOR DEVELOPING NEURONAL NETWORK HIGH THROUGHPUT SCREENING DEVICES

2016 ◽  
Vol 28 (03) ◽  
pp. 1630002
Author(s):  
Tsuneo Urisu

Ion-channel current recordings based on an incubation type planar patch clamp were first reported in 2008, using HEK293 cells expressed with TRPV1 channels and capsaicin as ligand molecules. At first the success probability (number of devices which normally worked/total number of devices fabricated) was extremely low (several %). Several years later, we have succeeded in significantly decreasing the base line noise by using a salt-bridge-type Ag/AgCl electrode and successfully demonstrated the application of an incubation type planar patch clamp to ligand gated ion-channel biosensors and light gated ion-channel biosensors using HEK293 cells expressed with ChRWR. Furthermore, a spontaneous ion-channel current from a neuronal network was successfully observed by using a planar patch clamp chip, on which the neuronal network was occasionally formed with a soma of a neuron on a micro through-hole. Although the neuronal network was not controlled, this success shows the high potential of realizing a high throughput screening device on the basis of channel current measurements, which contain the most important information on network conditions.

2018 ◽  
Vol 13 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Alison Obergrussberger ◽  
Tom A. Goetze ◽  
Nina Brinkwirth ◽  
Nadine Becker ◽  
Søren Friis ◽  
...  

2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  

2018 ◽  
Vol 31 (12) ◽  
pp. 1332-1338 ◽  
Author(s):  
Rong Xu ◽  
Yuan Xiao ◽  
Yan Liu ◽  
Bo Wang ◽  
Xing Li ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 841 ◽  
Author(s):  
Caitlin Lynch ◽  
Jinghua Zhao ◽  
Srilatha Sakamuru ◽  
Li Zhang ◽  
Ruili Huang ◽  
...  

The nuclear receptor, estrogen-related receptor alpha (ERRα; NR3B1), plays a pivotal role in energy homeostasis. Its expression fluctuates with the demands of energy production in various tissues. When paired with the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the PGC/ERR pathway regulates a host of genes that participate in metabolic signaling networks and in mitochondrial oxidative respiration. Unregulated overexpression of ERRα is found in many cancer cells, implicating a role in cancer progression and other metabolism-related diseases. Using high throughput screening assays, we screened the Tox21 10K compound library in stably transfected HEK293 cells containing either the ERRα-reporter or the reporter plus PGC-1α expression plasmid. We identified two groups of antagonists that were potent inhibitors of ERRα activity and/or the PGC/ERR pathway: nine antineoplastic agents and thirteen pesticides. Results were confirmed using gene expression studies. These findings suggest a novel mechanism of action on bioenergetics for five of the nine antineoplastic drugs. Nine of the thirteen pesticides, which have not been investigated previously for ERRα disrupting activity, were classified as such. In conclusion, we demonstrated that high-throughput screening assays can be used to reveal new biological properties of therapeutic and environmental chemicals, broadening our understanding of their modes of action.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1031-1031
Author(s):  
Maria Giustina Rotordam ◽  
Elisa Fermo ◽  
Nadine Becker ◽  
Wilma Barcellini ◽  
Andrea Brüggemann ◽  
...  

Abstract Piezo1 is a mechanosensitive ion channel supposed to regulate the volume and maintain the structural integrity in Red Blood Cells (RBCs), as gain-of-function mutations in this channel are associated to the RBC disease Hereditary Xerocytosis (Zarychanski et al. Blood 2012; Bae et al. Proceedings of the National Academy of Sciences 2013). Piezo1 is activated by several mechanical forces, including stretching, poking and shear stress and allows Ca2+ and other cations to enter the cell generating an electrical response. In 2015, it has been discovered that Piezo1 is sensitive to a small molecule, Yoda1 (Syeda et al. Elife 2015), which keeps the channel open and affects its inactivation kinetics. This finding has created new possibilities to elucidate Piezo1 gating mechanism and explore its functional significance in physiological and pathophysiological conditions. Here, we present a patient with a novel PIEZO1 mutation (R2110W) and a patch clamp-based high-throughput screening assay for Piezo1 activity. We established a protocol to detect functional Piezo1 mutations upon chemical stimulation by Yoda1, yet were not able to stimulate the channel via mechanical force, i.e. pressure steps and shear-stress. The assay was first developed on Neuro2A (N2A), a neuroblastoma cell-line endogenously expressing Piezo1 channels (kindly provided by Max-Delbrück Center, Berlin), due to larger abundance of Piezo1 channels in these cells. Initial experiments were performed on the Patchliner (Nanion Technologies GmbH, Munich), a medium-throughput automated patch clamp system able to record up to 8 cells at a time. Currents were elicited using a voltage ramp ranging from -100 to +80 mV for 300 ms, the holding potential was set to -60 mV. A significantly increased whole-cell current was observed upon 10 µM Yoda1 application in half of the recorded cells and the resulting Yoda1-induced currents were inhibited by 30 µM gadolinium chloride, a non-specific blocker of stretch-activated channels. The assay was then implemented on the SyncroPatch 384PE (Nanion Technologies GmbH, Munich), capable of recording up to 384 cells in parallel under identical experimental conditions, thus allowing for reliable statistical analysis. Yoda1 responding cells were selected based on strict quality control (QC) criteria, i.e. the seal resistance stability over time. In one example NPC-384 chip 140 out of 384 N2A cells (37%) passed the QC criteria and 85 cells (60% of the valid cells) were considered as Yoda1 responders. Finally, we investigated Piezo1 electrophysiological properties in healthy and patient RBCs carrying the novel PIEZO1 R2110W mutation. Similar to N2A cells, RBCs currents were analyzed and divided into Yoda1 responders and non-responders according to our QC criteria. The increase in whole-cell currents induced by Yoda1 application was significantly higher in patient compared to control RBCs, which was also reflected by a higher number of Yoda1 responders compared to control. Residue R2110W is structurally located in a gating sensitive area of the channel protein suggesting a gain-of-function. This would be in line with previously described mutations in PIEZO1 (Albuisson et al. Nature Communications 2013) and the mild form of anaemia observed in the patient. Furthermore, we excluded any involvement of Gardos channels in the Yoda1-induced currents by comparing measurements in the presence and absence of the specific Gardos channel inhibitor TRAM-34. Altogether, our work demonstrates that high-throughput patch clamping can provide a robust assay to study functional Piezo1 impairments in primary RBCs without expressing the mutated channel protein in a heterologous expression system. Our approach may be used to detect other channelopathies not only in RBCs and may serve as routine screening assay for diseases related to ion channel dysfunctions in general, complementary to gene sequencing. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 14 (7) ◽  
pp. 769-780 ◽  
Author(s):  
Emma C. Hollands ◽  
Tim J. Dale ◽  
Andrew W. Baxter ◽  
Helen J. Meadows ◽  
Andrew J. Powell ◽  
...  

γ-Amino butyric acid (GABA)—activated Cl— channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABAA subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABAA receptor pharmacology. In HEK293 cells stably expressing human α1β3γ2 GABAA channels, GABA evoked outward currents at 0 mV of 1.05 ± 0.08 nA, measured 8 s post GABA addition. The IGABA was linear and reversed close to the theoretical ECl (—56 mV). Concentration-response curve analysis yielded a mean pEC50 value of 5.4 and Hill slope of 1.5, and for a series of agonists, the rank order of potency was muscimol > GABA > isoguvacine. A range of known positive modulators, including diazepam and pentobarbital, produced concentration-dependent augmentation of the GABA EC 20 response (1 µM). The competitive antagonists bicuculline and gabazine produced concentration-dependent, parallel, rightward displacement of GABA curves with pA2 and slope values of 5.7 and 1.0 and 6.7 and 1.0, respectively. In contrast, picrotoxin (0.2-150 µM) depressed the maximal GABA response, implying a non-competitive antagonism. Overall, the pharmacology of human α1β3γ2 GABAA determined by PPC was highly similar to that obtained by conventional patch-clamp methods. In small-scale single-shot screens, Z′ values of >0.5 were obtained in agonist, modulator, and antagonist formats with hit rates of 0% to 3%. The authors conclude that despite the inability of the method to resolve the peak agonist responses, PPC can rapidly and usefully quantify pharmacology for the α1β3γ2 GABAA isoform. These data suggest that PPC may be a valuable approach for a focused set and secondary screening of GABAA receptors and other slow ligand-gated ion channels. ( Journal of Biomolecular Screening 2009:769-780)


Sign in / Sign up

Export Citation Format

Share Document