PRIOR FORECASTING OF EPILEPTIC SEIZURE AND LOCALIZATION OF EPILEPTOGENIC REGION

2017 ◽  
Vol 29 (02) ◽  
pp. 1750012 ◽  
Author(s):  
Aarti Sharma ◽  
J. K. Rai ◽  
R. P. Tewari

Forecasting of an epileptic seizure and localization of the epileptogenic region is a challenging task. Scalp electroencephalogram (EEG) is the most commonly used signal for studying various brain disorders. This paper presents an algorithm for seizure forecast and detection of epileptogenic region by analyzing EEG signals from frontal, temporal, central and parietal region of the brain. Eight features have been extracted from each EEG signal. Average of features extracted from different regions of brain is computed for each region. An artificial neural network is trained to predict an epileptic seizure by identifying the pre-ictal duration. The trained neural network is tested and found to have an accuracy of 92.3%, sensitivity of 100% and specificity, of 83.3%. Two prominent features, accumulated energy and power in beta band, have been identified to identify the epileptogenic region. The result shows that the region corresponding to temporal lobe has maximum variation in these two features for pre-ictal and inter-ictal duration. The result validates the proposed algorithm to identify the pre-ictal state and predict the seizure in advance and identification of the epileptogenic region.

2021 ◽  
Vol 17 (2) ◽  
pp. 109-113
Author(s):  
Ameen Omar Barja

One of the most important fields in clinical neurophysiology is an electroencephalogram (EEG). It is a test used to detect problems related to the brain electrical activity, and it can track and records patterns of brain waves. EEG continues to play an essential role in diagnosis and management of patients with epileptic seizure disorders. Nevertheless, the outcome of EEG as a tool for evaluating epileptic seizure is often interpreted as a noise rather than an ordered pattern. The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized in the diagnosis and treatment of epilepsy. EEG signals during the seizure can be modeled as ordinary differential equation (ODE). In this study we will present an alternative form of ODE of EEG signals through the seizure.


Author(s):  
Rahul Sharma ◽  
Pradip Sircar ◽  
Ram Bilas Pachori

A neurological abnormality in the brain that manifests as a seizure is the prime risk of epilepsy. The earlier and accurate detection of the epileptic seizure is the foremost task for the diagnosis of epilepsy. In this chapter, a nonlinear deep neural network is used for seizure classification. The proposed network is based on the autoencoder that significantly explores the non-linear dynamics of the electroencephalogram (EEG) signals. It involves the traditional deep neural domain expertise to extract the features from the raw data in order to fit a deep neural network-based learning model and predicts the class of the unknown seizures. The EEG signals are subjected to an autoencoder-based neural network that unintendedly extracts the significant attributes that are applied to the softmax classifier. The achieved classification accuracy is up to 100% on different publicly available Bonn University database classes. The proposed algorithm is suitable for real-time implementation.


2021 ◽  
pp. 54-62
Author(s):  
Asseel Jabbar Almahdi ◽  
Atyaf Jarullah Yaseen ◽  
Ali Fattah Dakhil

Epilepsy is a critical neurological disorder with critical influences on the way of living of its victims and prominent features such as persistent convulsion periods followed by unconsciousness. Electroencephalogram (EEG) is one of the commonly used devices for seizure recognition and epilepsy detection. Recognition of convulsions using EEG waves takes a relatively long time because it is conducted physically by epileptologists. The EEG signals are analyzed and categorized, after being captured, into two types, which are normal or abnormal (indicating an epileptic seizure).  This study relies on EEG signals which are provided by Arrhythmia Database. Thus, this work is a step beyond the traditional database mission of delivering users’ inquiries; instead, this work is to extract insight and knowledge of such data. The features are extracted from the signals by applying the Discrete Wavelet transform (DWT) method on the input EEG signals. Two different algorithms Support vector machine (SVM) and k-nearest neighbours (KNN) are applied to the extracted features. After using the above method, two different types of EEG are expected by using classification, either to be normal (refers to the normal activeness of the brain) or abnormal (refers to the non-normal activeness of the brain, which may involve epilepsy). The evaluation is based on three parameters (Precision, Recall, and Accuracy), and also on the implementation time. In this research, two different methods are used, the first is the DWT with SVM, and the second is the DWT with KNN. With regard to the three-parameter values and implementation time, it turned out that the second method was more efficient than the first because of its higher accuracy.


2017 ◽  
Vol 6 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Yasser Al Hajjar ◽  
Abd El Salam Ahmad Al Hajjar ◽  
Bassam Daya ◽  
Pierre Chauvet

The aim of this paper is to find the best intelligent model that allows predicting the future of premature newborns according to their electroencephalogram (EEG). EEG is a signal that measures the electrical activity of the brain. In this paper, the authors used a dataset of 397 EEG records detected at birth of premature newborns and their classification by doctors two years later: normal, sick or risky. They executed machine learning on this dataset using several intelligent models such as multiple linear regression, linear discriminant analysis, artificial neural network and decision tree. They used 14 parameters concerning characteristics extracted from EEG records that affect the prognosis of the newborn. Then, they presented a complete comparative study between these models in order to find who gives best results. Finally, they found that decision tree gave best result with performance of 100% for sick records, 76.9% for risky and 69.1% for normal ones.


Fractals ◽  
2018 ◽  
Vol 26 (04) ◽  
pp. 1850051 ◽  
Author(s):  
HAMIDREZA NAMAZI ◽  
SAJAD JAFARI

It is known that aging affects neuroplasticity. On the other hand, neuroplasticity can be studied by analyzing the electroencephalogram (EEG) signal. An important challenge in brain research is to study the variations of neuroplasticity during aging for patients suffering from epilepsy. This study investigates the variations of the complexity of EEG signal during aging for patients with epilepsy. For this purpose, we employed fractal dimension as an indicator of process complexity. We classified the subjects in different age groups and computed the fractal dimension of their EEG signals. Our investigations showed that as patients get older, their EEG signal will be more complex. The method of investigation that has been used in this study can be further employed to study the variations of EEG signal in case of other brain disorders during aging.


2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 327-340
Author(s):  
A. Phraeson Gini ◽  
Dr.M.P. Flower Queen

Epilepsy is a psychiatric condition that has serious consequences for the human brain. The Electroencephalogram (EEG) may reveal a pattern that tells physicians whether an epileptic seizure is likely to occur again. EEG testing may also help the physician exclude other conditions that mimic epilepsy as a reason for the seizure. Now-a-days the researchers are showing much interest in these seizure detection because of its significance in epileptic detection. This paper is addressing an efficient soft computing framework for seizure detection from the EEG signal. The proposed pipeline of work is having the state-of-art as the possibility of achieving the maximum accuracy. The spectral features extracted from the Intrinsic mode functions (IMF) of EEG samples and it is directing the proposed flow towards the efficient detection of seizure and also the random forest algorithm based a convulsion classification is reliable for because of its learning behavior from the huge number of known dataset. The feature selection algorithm in this proposed work is stimulating the overall work towards the maximum true positive rate. This work is implemented on MATLAB platform and dataset were downloaded from the universal database such as Bonn university database. The results obtained from the proposed approach is showing the truthfulness of the approach introduced here.


Author(s):  
Pradeep Singh ◽  
Sujith Kumar Appikatla

Seizures are caused by irregular electrical pulses in the brain. Epileptic seizure detection on EEG signals is a long process, which is done manually by epileptologists. The aim of the study is automatically detecting the seizures of the brain, given the electroencephalogram signals by feature extraction and processing through different machine learning algorithms. Machines can be trained to do this type of observation and predict the output with high accuracy. In this chapter, the classification study of individual and ensemble classifier is performed for epileptic seizure detection. The proposed method consists of two phases: extraction of data from EEG signals and development of an individual and ensemble models. Bagging ensemble is developed to achieve better results. The development of the ensemble using various classification algorithms contributes towards increasing the diversity of the ensemble. An extensive comparative study with existing benchmark algorithm is performed for epileptic seizure detection.


2020 ◽  
Vol 10 (7) ◽  
pp. 1584-1589
Author(s):  
Chi Hua ◽  
Li Liu ◽  
Liang Kuang ◽  
Dechang Pi

As a common brain disease, epilepsy is rapidly increasing in terms of the number of patients. Long-term repeated sudden seizures seriously affect the physical and mental health of patients. Epileptic electroencephalogram (EEG) signals are an effective tool in the hands of clinicians for diagnosing epilepsy, and how to use computer technology to automatically analyze and detect epileptic EEG signals has become very meaningful. This article proposes a method for effectively identifying epileptic EEGs for further diagnosis of epilepsy. The traditional modeling method default is to train on training samples and test samples that obey the same distribution, which usually does not match the actual situation. Therefore, a transfer learning (TL) mechanism is introduced to a classical radial basis function neural network (RBFNN). Considering the limited stability of a single classifier, this article introduces an integration strategy and proposes an integrated transfer RBFNN (ITRBFNN) algorithm. Experimental results of EEG signal recognition for epilepsy show that the algorithm has better adaptability of scene transfer and stability.


Sign in / Sign up

Export Citation Format

Share Document