scholarly journals EEG Signals Analysis for Epileptic Seizure Detection Using DWT Method with SVM and KNN Classifiers

2021 ◽  
pp. 54-62
Author(s):  
Asseel Jabbar Almahdi ◽  
Atyaf Jarullah Yaseen ◽  
Ali Fattah Dakhil

Epilepsy is a critical neurological disorder with critical influences on the way of living of its victims and prominent features such as persistent convulsion periods followed by unconsciousness. Electroencephalogram (EEG) is one of the commonly used devices for seizure recognition and epilepsy detection. Recognition of convulsions using EEG waves takes a relatively long time because it is conducted physically by epileptologists. The EEG signals are analyzed and categorized, after being captured, into two types, which are normal or abnormal (indicating an epileptic seizure).  This study relies on EEG signals which are provided by Arrhythmia Database. Thus, this work is a step beyond the traditional database mission of delivering users’ inquiries; instead, this work is to extract insight and knowledge of such data. The features are extracted from the signals by applying the Discrete Wavelet transform (DWT) method on the input EEG signals. Two different algorithms Support vector machine (SVM) and k-nearest neighbours (KNN) are applied to the extracted features. After using the above method, two different types of EEG are expected by using classification, either to be normal (refers to the normal activeness of the brain) or abnormal (refers to the non-normal activeness of the brain, which may involve epilepsy). The evaluation is based on three parameters (Precision, Recall, and Accuracy), and also on the implementation time. In this research, two different methods are used, the first is the DWT with SVM, and the second is the DWT with KNN. With regard to the three-parameter values and implementation time, it turned out that the second method was more efficient than the first because of its higher accuracy.

2021 ◽  
Vol 17 (2) ◽  
pp. 109-113
Author(s):  
Ameen Omar Barja

One of the most important fields in clinical neurophysiology is an electroencephalogram (EEG). It is a test used to detect problems related to the brain electrical activity, and it can track and records patterns of brain waves. EEG continues to play an essential role in diagnosis and management of patients with epileptic seizure disorders. Nevertheless, the outcome of EEG as a tool for evaluating epileptic seizure is often interpreted as a noise rather than an ordered pattern. The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized in the diagnosis and treatment of epilepsy. EEG signals during the seizure can be modeled as ordinary differential equation (ODE). In this study we will present an alternative form of ODE of EEG signals through the seizure.


Author(s):  
Jafar Zamani ◽  
Ali Boniadi Naieni

Purpose: There are many methods for advertisements of products and neuromarketing is new area in this field. In neuromarketing, we use neuroscience information for revealing Consumer behavior by extracting brain activity. Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), and Electroencephalography (EEG) are high efficient tools for investigating the brain activity in neuromarketing. EEG signal is a high temporal resolution and a cheap method for examining the brain activity. Materials and Methods: 32 subjects (16 males and 16 females) aging between 20-35 years old participated in this study. We proposed neuromarketing method exploit EEG system for predicting consumer preferences while they view E-commerce products. We apply some important preprocessing steps for noise and artifacts elimination of the EEG signal. In next step feature extraction methods are applied on the EEG data such as Discrete Wavelet Transform (DWT) and statistical features. The goal of this study is classification of analyzed EEG signal to likes and dislikes using supervised algorithms. We use Support Vector Machine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) for data classification. The mentioned methods were used for whole and lobe brain data. Results: The results show high efficacy for SVM algorithms than other methods. Accuracy, sensitivity, specificity and precision parameters were used for evaluation of the model performance. The results show high performance of SVM algorithms for classification of the data with accuracy more than 87% and 84% for whole and parietal lobe data. Conclusion: We designed a tool with EEG signals for extraction brain activity of consumers using neuromarketing methods. We investigated the effects of advertising on brain activity of consumers by EEG signals measures.


2021 ◽  
pp. 50-52
Author(s):  
N Shweta ◽  
Nagendra H

An electroencephalogram (EEG) is a test that records electrical activity in the brain. Epileptic seizures affect approximately 50 million people worldwide, making it one of the most serious neurological disorders. Seizures cause a loss of consciousness, but there are no specic signs associated with epileptic seizures. analysing the brain's activity during seizures and locating the seizure duration in EEG recordings is difcult and time consuming. A discrete wavelet transform (DWT), which is an effective tool for decomposing EEG signals into delta, theta, alpha, beta, and gamma ( and ) frequency bands. For research, the db4 is used, which has a morphological d,q,a,b g structure that is different to that of EEG.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4639 ◽  
Author(s):  
Md. Khademul Islam Molla ◽  
Kazi Mahmudul Hassan ◽  
Md. Rabiul Islam ◽  
Toshihisa Tanaka

Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the electrical functioning of the brain. There is an urgent demand for an automatic epilepsy detection system using electroencephalography (EEG) for clinical application. In this paper, the EEG signal is divided into short time frames. Discrete wavelet transform is used to decompose each frame into a number of subbands. Different entropies as well as a group of features with which to characterize the spike events are extracted from each subband signal of an EEG frame. The features extracted from individual subbands are concatenated, yielding a high-dimensional feature vector. A discriminative subset of features is selected from the feature vector using a graph eigen decomposition (GED)-based approach. Thus, the reduced number of features obtained is effective for differentiating the underlying characteristics of EEG signals that indicate seizure events and those that indicate nonseizure events. The GED method ranks the features according to their contribution to correct classification. The selected features are used to classify seizure and nonseizure EEG signals using a feedforward neural network (FfNN). The performance of the proposed method is evaluated by conducting various experiments with a standard dataset obtained from the University of Bonn. The experimental results show that the proposed seizure-detection scheme achieves a classification accuracy of 99.55%, which is higher than that of state-of-the-art methods. The efficiency of FfNN is compared with linear discriminant analysis and support vector machine classifiers, which have classification accuracies of 98.72% and 99.39%, respectively. Hence, the proposed method is confirmed as a potential marker for EEG-based seizure detection.


2017 ◽  
Vol 29 (02) ◽  
pp. 1750012 ◽  
Author(s):  
Aarti Sharma ◽  
J. K. Rai ◽  
R. P. Tewari

Forecasting of an epileptic seizure and localization of the epileptogenic region is a challenging task. Scalp electroencephalogram (EEG) is the most commonly used signal for studying various brain disorders. This paper presents an algorithm for seizure forecast and detection of epileptogenic region by analyzing EEG signals from frontal, temporal, central and parietal region of the brain. Eight features have been extracted from each EEG signal. Average of features extracted from different regions of brain is computed for each region. An artificial neural network is trained to predict an epileptic seizure by identifying the pre-ictal duration. The trained neural network is tested and found to have an accuracy of 92.3%, sensitivity of 100% and specificity, of 83.3%. Two prominent features, accumulated energy and power in beta band, have been identified to identify the epileptogenic region. The result shows that the region corresponding to temporal lobe has maximum variation in these two features for pre-ictal and inter-ictal duration. The result validates the proposed algorithm to identify the pre-ictal state and predict the seizure in advance and identification of the epileptogenic region.


2013 ◽  
Vol 459 ◽  
pp. 228-231 ◽  
Author(s):  
Hao Yang ◽  
Song Wu

Electroencephalogram (EEG) is generally used in Brain-Computer Interface (BCI) applications to measure the brain signals. However, the multichannel EEG signals characterized by unrelated and redundant features will deteriorate the classification accuracy. This paper presents a method based on common spatial pattern (CSP) for feature extraction and support vector machine with genetic algorithm (SVM-GA) as a classifier, the GA is used to optimize the kernel parameters setting. The proposed algorithm is performed on data set Iva of BCI Competition III. Results show that the proposed method outperforms the conventional linear discriminant analysis (LDA) in average classification performance.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950160 ◽  
Author(s):  
Rongxiang Ge ◽  
Jianzhong Hu

The classification of electroencephalogram (EEG) signals is a key technique of brain–computer interface (BCI) system. In view of the complexity of EEG signals and the low accuracy in EEG signals recognition, a motor imagery EEG signals classification method with multi-domain fusion based on Dempster–Shafer (D-S) evidence theory is presented in this paper. Firstly, time domain statistics (TDS), autoregressive (AR) model and discrete wavelet transform (DWT) are used to extract features from EEG signals, respectively, and three probabilistic output support vector machine (SVM) classification models are trained based on these three feature sets. Secondly, using the output of each SVM, we construct basic probability assignment (BPA) function and get fusion BPA through D-S evidence theory. Finally, determining the class of test samples based on decision rules. Four databases from BCI competition are employed to evaluate the proposed approach, and the highest classification accuracy reaches 92.83%. Results show that this method acquires higher accuracy and has strong individual adaptability.


Author(s):  
Harshavarthini S ◽  
Aswathy M. P. ◽  
Harshini P ◽  
Priyanka G

Detection of epileptic seizure activities from multi-channel electroencephalogram (EEG) signals plays a giant position inside the timely treatment of the sufferers with epilepsy. Visual identification of epileptic seizure in long-time period EEG is bulky and tedious for neurologists, which may additionally cause human errors. An automated device for accurate detection of seizures in a protracted-time period multi-channel EEG is crucial for the scientific prognosis. The features selection is based on discrete wavelet transformation (DWT).and feature extraction based GLCM. In the last stage, Probabilistic Neural Network is employed to classify the Normal and epileptic EEG signals.


2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


Sign in / Sign up

Export Citation Format

Share Document