Assessment of Anti-Angiogenic Drug in Cancer Therapy

Author(s):  
Indrajit Pan

It has been documented in the literature that a solid tumor survives by the generation of micro-vessels around it. This phenomenon is known as angiogenesis. Angiogenesis is governed by two factors, namely Tumor Angiogenic Factor (TAF) secreted by the tumor cells and tissue Fibronectin (FNT) concentration in the extra-cellular space. These two factors help in mobilization of endothelial cells from nearby blood vessels. At the initial phase of angiogenesis, neighboring blood vessels affect in formation of capillary sprouts. In this work, to the authors develop a clinically relevant analytical model that could act as an effective tracing system of tumor growth. The author has performed a quantitative assessment of tumor angiogenesis. This analytical method is a correlation between tumor system and vasculature system through an analytical assessment at peripheral blood circulatory of tumor milieu.

Author(s):  
Indrajit Pan

It has been documented in the literature that a solid tumor survives by the generation of micro-vessels around it. This phenomenon is known as angiogenesis. Angiogenesis is governed by two factors, namely Tumor Angiogenic Factor (TAF) secreted by the tumor cells and tissue Fibronectin (FNT) concentration in the extra-cellular space. These two factors help in mobilization of endothelial cells from nearby blood vessels. At the initial phase of angiogenesis, neighboring blood vessels affect in formation of capillary sprouts. In this work, to the authors develop a clinically relevant analytical model that could act as an effective tracing system of tumor growth. The author has performed a quantitative assessment of tumor angiogenesis. This analytical method is a correlation between tumor system and vasculature system through an analytical assessment at peripheral blood circulatory of tumor milieu.


2010 ◽  
Vol 18 (04) ◽  
pp. 749-761 ◽  
Author(s):  
DURJOY MAJUMDER

Solid tumor survives by the process of angiogenesis. In this process micro-vessels are generated around it. Two factors govern this process. One is Tumor Angiogenic Factor (TAF) secreted by the tumor cells and another is tissue Fibronectin (FNT) concentration in the extra-cellular space. These two factors help in mobilization of endothelial cells from nearby blood vessels, a process called angiogenesis. Metronomic chemotherapeutic (MCT) procedure is targeted at this angiogenic microvessels at the cancer milieu and thereby, limits the growth of cancer cells. Here, we have developed a fluid dynamical based analytical model. The model comprises tumor system and a microvasculature system around it. Another characteristic of the developed model is the incorporation of a tracking procedure of either the tumor or microvasculature system from the peripheral blood. Therefore, this analytical method makes a correlation between tumor system, its micro-vasculature system and the peripheral blood circulatory system. With this analytical armamentarium we have tested the effectiveness of MCT in comparison with the conventional maximum tolerable dosing (MTD) strategy. Our simulation result reveals that under the condition MCT is better compared to MTD in controlling tumor growth in a dynamical sense. The advantage of this analytical model is that the tumor system dynamics can be effectively traced through both invasive and non-invasive procedure as and when required.


2018 ◽  
Vol 5 (4) ◽  
pp. 76 ◽  
Author(s):  
Poulami Majumder

Angiogenesis, sprouting of new blood vessels from pre-existing vasculatures, plays a critical role in regulating tumor growth. Binding interactions between integrin, a heterodimeric transmembrane glycoprotein receptor, and its extracellular matrix (ECM) protein ligands govern the angiogenic potential of tumor endothelial cells. Integrin receptors are attractive targets in cancer therapy due to their overexpression on tumor endothelial cells, but not on quiescent blood vessels. These receptors are finding increasing applications in anti-angiogenic therapy via targeted delivery of chemotherapeutic drugs and nucleic acids to tumor vasculatures. The current article attempts to provide a retrospective account of the past developments, highlight important contemporary contributions and unresolved set-backs of this emerging field.


Nature ◽  
1978 ◽  
Vol 271 (5642) ◽  
pp. 246-248 ◽  
Author(s):  
H. R. CARNE ◽  
ELEANOR O. ONON

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria I. Alvarez-Vergara ◽  
Alicia E. Rosales-Nieves ◽  
Rosana March-Diaz ◽  
Guiomar Rodriguez-Perinan ◽  
Nieves Lara-Ureña ◽  
...  

AbstractThe human Alzheimer’s disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 37612-37626 ◽  
Author(s):  
Vishal Nemaysh ◽  
Pratibha Mehta Luthra

Platelet-derived growth factor receptor-beta (PDGFR-β) is expressed by endothelial cells (ECs) of tumor-associated blood vessels and regulates primarily early hematopoiesis.


2001 ◽  
Vol 125 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Mark W. Lingen

Abstract The basic signs and symptoms of inflammation and wound healing have been appreciated for thousands of years. However, the specific cells involved and their roles in this complex environment are still being elucidated today. In 1926, the origin of the phagocytic mononuclear ameboid wandering cell (macrophage) had not been determined. One popular theory was that the cells were differentiated from the endothelial cells of the nearby blood vessels, whereas others believed that the cells came from the peripheral blood or resting wandering cells. The purpose of this article is to review the seminal article published by Lang regarding this topic nearly 75 years ago. In addition, this article will review what is now known with regard to the role of the macrophage and endothelial cells in the development of angiogenesis, which is arguably the most critical component of successful inflammatory process or wound healing.


Sign in / Sign up

Export Citation Format

Share Document