Ferroresonance in Power and Instrument Transformers

Author(s):  
Afshin Rezaei-Zare ◽  
Reza Iravani

This chapter describes the fundamental concepts of ferroresonance phenomenon and analyzes its symptoms and the consequences in transformers and power systems. Due to its nonlinear nature, the ferroresonance phenomenon can result in multiple oscillating modes which can be characterized based on the concepts of the nonlinear dynamic systems, e.g., Poincare map. Among numerous system configurations which can experience the phenomena, a few typical systems scenarios, which cover the majority of the observed ferroresonance incidents in power systems, are introduced. This chapter also classifies the ferroresonance study methods into the analytical and the time-domain simulation approaches. A set of analytical approaches are presented, and the corresponding fundamentals, assumptions, and limitations are discussed. Furthermore, key parameters for accurate digital time-domain simulation of the ferroresonance phenomenon are introduced, and the impact of transformer models and the iron core representations on the ferroresonance behavior of transformers is investigated. The chapter also presents some of the ferroresonance mitigation approaches in power and instrument transformers.

Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1420-1439
Author(s):  
Albert R Kottke ◽  
Norman A Abrahamson ◽  
David M Boore ◽  
Yousef Bozorgnia ◽  
Christine A Goulet ◽  
...  

Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the PSA calculation make application of scaling factors dependent on the frequency content of the input motion, complicating the development and adaptability of GMMs. By comparison, Fourier amplitude spectrum (FAS) represents ground-motion amplitudes that are completely independent from the amplitudes at other frequencies, making them an attractive alternative for GMM development. Random vibration theory (RVT) predicts the peak response of motion in the time domain based on the FAS and a duration, and thus can be used to relate FAS to PSA. Using RVT to compute the expected peak response in the time domain for given FAS therefore presents a significant advantage that is gaining traction in the GMM field. This article provides recommended RVT procedures relevant to GMM development, which were developed for the Next Generation Attenuation (NGA)-East project. In addition, an orientation-independent FAS metric—called the effective amplitude spectrum (EAS)—is developed for use in conjunction with RVT to preserve the mean power of the corresponding two horizontal components considered in traditional PSA-based modeling (i.e., RotD50). The EAS uses a standardized smoothing approach to provide a practical representation of the FAS for ground-motion modeling, while minimizing the impact on the four RVT properties ( zeroth moment, [Formula: see text]; bandwidth parameter, [Formula: see text]; frequency of zero crossings, [Formula: see text]; and frequency of extrema, [Formula: see text]). Although the recommendations were originally developed for NGA-East, they and the methodology they are based on can be adapted to become portable to other GMM and engineering problems requiring the computation of PSA from FAS.


2020 ◽  
Vol 62 (7) ◽  
pp. 408-415
Author(s):  
M Ingram ◽  
A Gachagan ◽  
A Nordon ◽  
A J Mulholland ◽  
M Hegarty

Experimental variation from ultrasonic hardware is one source of uncertainty in measured ultrasonic data. This uncertainty leads to a reduction in the accuracy of images generated from these data. In this paper, a quick, easy-to-use and robust methodology is proposed to reduce this uncertainty in images generated using the total focusing method (TFM). Using a 128-element linear phased array, multiple full matrix capture (FMC) datasets of a planar reflection are used to characterise the experimental variation associated with each element index in the aperture. Following this, a methodology to decouple the time-domain error associated with transmission and reception at each element index is presented. These time-domain errors are then introduced into a simulated array model used to generate the two-way pressure profile from the array. The side-lobe-to-main-lobe energy ratio (SMER) and beam offset are used to quantify the impact of these measured time-domain errors on the pressure profile. This analysis shows that the SMER is raised by more than 6 dB and the beam is offset by more than 1 mm from its programmed focal position. This calibration methodology is then demonstrated using a steel non-destructive testing (NDT) sample with three side-drilled holes (SDHs). The time delay errors from transmission and reception are introduced into the time-of-flight (TOF) calculation for each ray path in the TFM. This results in an enhancement in the accuracy of defect localisation in the TFM image.


Author(s):  
Abel Medellin ◽  
Michelle Arango-Turner ◽  
Curtis Fuhr

Spars are towed to installation site horizontally and upended by progressive flooding of tanks. It is common practice to perform a dynamic time domain simulation for a self upending classic spar to determine hydrostatic pressures on compartments. There are many different flooding scenarios that create challenges in modeling and simulation during the design phase. In one particular scenario, the spar upending is initiated by opening valves that allow water to flood into the skirt tank. The skirt tank will progressively fill, based on the differential hydrostatic pressure at valves, and cause the spar to upend. Flooding into keel tanks will commence once respective openings become submerged. Several openings from the skirt tank into the keel tanks reduce the differential pressure experienced in the keel tanks during upending. Simulation of the transfer of water between tanks cannot be modeled with ease using the standard tank flooding options available within the software suite. This particular compartment flooding problem is solved by utilizing a scheme in which the time domain simulation was performed iteratively for a specified time interval. For every iteration the amount of water transferred between the skirt and keel tanks are calculated. The amount of water transferred is calculated using a custom modeling technique. The openings from the skirt tank into the keel tanks are not modeled as a typical hole or valve into a compartment, but the location of these holes are modeled. The amount of water flowing through these openings is determined by the water level in the skirt tank, friction through the opening, and pressure inside the keel tanks. This paper will describe in detail the scheme developed, the tank modeling requirements, and the results obtained.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2759 ◽  
Author(s):  
Wojciech Uchman ◽  
Janusz Kotowicz ◽  
Leszek Remiorz

In this article, an investigation of a free-piston Stirling engine-based micro-cogeneration (μCHP) unit is presented. This work is a step towards making the system calculations more reliable, based on a data-driven model, which enables the time-domain simulation of the μCHP behavior. A laboratory setup was developed that allowed for the measurement of a micro-cogeneration unit during long-term operation with a variable thermal load. The maximum efficiency of electricity generation was equal to 13.2% and the highest overall efficiency was equal to 95.7%. A model of the analyzed μCHP system was developed and validated. The simulation model was based on the device’s characteristics that were obtained from the measurements; it enables time-domain calculations, taking into account the different operating modes of the device. The validation of the system showed satisfactory compliance of the model with the measurements: for the period modeled of 24 h, the error in the heat generation fluctuated in the range 0.31–4.50%, the error in the electricity generation was in the range 2.48–4.70%, the error in the natural gas consumption was in the range 0.26–4.59%, and the engine’s runtime error was in the range 0.14–8.58%. The modelling process is easily applicable to other energy systems for detailed analysis.


Author(s):  
Shiang-Lung Koo ◽  
Han-Shue Tan ◽  
Masayoshi Tomizuka

Longitudinal ride comfort is one of the most crucial features to most advanced vehicle control systems. Literature review shows that the ride comfort analysis in vehicle longitudinal motion can be divided into two categories: time domain and frequency domain. Most vehicle longitudinal control designs incorporate jerk and acceleration constraints from the time-domain comfort criterion. However, the vehicle longitudinal characteristics in the frequency range important to passenger ride comfort are rarely discussed in the vehicle control literature. This paper proposes an improved vehicle longitudinal model that captures tire and suspension modes accurately and investigates the impact of these often-ignored vehicle resonant modes to ride comfort. This study shows that the "tire-mode switching behavior" affects longitudinal ride comfort of a stopping vehicle rather than the suspension. A passenger car was tested as an example, and the collected data verified the analytical prediction from the improved vehicle longitudinal model.


Author(s):  
S. J. Lee ◽  
M. H. Kim

The coupling and interactions between ship motion and inner-tank sloshing are investigated by a potential-viscous hybrid method in the time domain. For the time-domain simulation of vessel motion, the hydrodynamic coefficients and wave forces are obtained by a potential-theory-based 3D diffraction/radiation panel program in the frequency domain. Then, the corresponding simulations of motions in the time domain are carried out using the convolution-integral method. The liquid sloshing in a tank is simulated in the time domain by a Navier–Stokes solver. A finite difference method with SURF scheme assuming the single-valued free-surface profile is applied for the direct simulation of liquid sloshing. The computed sloshing forces and moments are then applied as external excitations to the ship motion. The calculated ship motion is in turn inputted as the excitation for liquid sloshing, which is repeated for the ensuing time steps. For comparison, we independently developed a 3D panel program for linear inner-fluid motions, and it is coupled with the vessel-motion program in the frequency domain. The developed computer programs are applied to a barge-type floating production storage and offloading (FPSO) hull equipped with two partially filled tanks. The time-domain simulation results show reasonably good agreement when compared with Maritime Research Institute Netherlands (MARIN’s) experimental results. The frequency-domain results qualitatively reproduce the trend of coupling effects, but the peaks are in general overpredicted. It is seen that the coupling effects on roll motions appreciably change with filling level. The most pronounced coupling effects on roll motions are the shift or split of peak frequencies. The pitch motions are much less influenced by the inner-fluid motion compared with roll motions.


Sign in / Sign up

Export Citation Format

Share Document