Multilevel Image Segmentation Using Modified Particle Swarm Optimization

Author(s):  
Sourav De ◽  
Firoj Haque

Particle Swarm Optimization (PSO) is a well-known swarm optimization technique. PSO is very efficient to optimize the image segmentation problem. PSO algorithm have some drawbacks as the possible solutions may follow the global best solution at one stage. As a result, the probable solutions may bound within that locally optimized solutions. The proposed chapter tries to get over the drawback of the PSO algorithm and proposes a Modified Particle Swarm Optimization (MfPSO) algorithm to segment the multilevel images. The proposed method is compared with the original PSO algorithm and the renowned k-means algorithm. Comparison of the above mentioned existing methods with the proposed method are applied on three real life multilevel gray scale images. For this purpose, three standard objective functions are applied to evaluate the quality of the segmented images. The comparison shows that the proposed MfPSO algorithm is done better than the PSO algorithm and the k-means algorithm to segment the real life multilevel gray scale images.

Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 357 ◽  
Author(s):  
Shu-Kai S. Fan ◽  
Chih-Hung Jen

Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.


2013 ◽  
Vol 477-478 ◽  
pp. 368-373 ◽  
Author(s):  
Hai Rong Fang

In order to raise the design efficiency and get the most excellent design effect, this paper combined Particle Swarm Optimization (PSO) algorithm and put forward a new kind of neural network, which based on PSO algorithm, and the implementing framework of PSO and NARMA model. It gives the basic theory, steps and algorithm; The test results show that rapid global convergence and reached the lesser mean square error MSE) when compared with Genetic Algorithm, Simulated Annealing Algorithm, the BP algorithm with momentum term.


Two tuning techniques namely: Particle Swarm Optimization (PSO) and Ziegler Nichols (ZN) technique are compared. PSO is an optimization technique based on the movement and intelligence of swarms. PSO applies the concept of social interaction to problem solving. It is a computational method that optimizes a problem by iteratively trying to improve a candidate solution about a given measure of quality. Ziegler Nichols tuning method is a heuristic method of tuning a PID controller. The ZN close loop tuning is performed by setting the I (integral) and D (derivative) gains to zero and increasing proportional gain to obtain sustained oscillations. The DC Motor is represented by second order transfer function is used as a plant, which is controlled using PID controller. The PID controller parameters are chosen by tuning the controller using PSO algorithm and ZN method. The response of the system to unit step input is plotted and performance measures are evaluated for comparing PSO algorithm and ZN technique. Here we have compared the two tuning methods based upon the settling time (Ts), peak overshoot (Mp) and the two performance indices namely Integral square error (ISE) and Integral Absolute error (IAE).


Kursor ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Alrijadjis Alrijadjis

Particle Swarm Optimization (PSO) is a popular optimization technique which is inspired by the social behavior of birds flocking or fishes schooling for finding food. It is a new metaheuristic search algorithm developed by Eberhart and Kennedy in 1995. However, the standard PSO has a shortcoming, i.e., premature convergence and easy to get stack or fall into local optimum. Inertia weight is an important parameter in PSO, which significantly affect the performance of PSO. There are many variations of inertia weight strategies have been proposed in order to overcome the shortcoming. In this paper, a new modified PSO with random activation to increase exploration ability, help trapped particles for jumping-out from local optimum and avoid premature convergence is proposed. In the proposed method, an inertia weight is decreased linearly until half of iteration, and then a random number for an inertia weight is applied until the end of iteration. To emphasis the role of this new inertia weight adjustment, the modified PSO paradigm is named Modified PSO with random activation (MPSO-RA). The experiments with three famous benchmark functions show that the accuracy and success rate of the proposed MPSO-RA increase of 43.23% and 32.95% compared with the standard PSO.


Sign in / Sign up

Export Citation Format

Share Document