Measures of Image and Video Segmentation

Author(s):  
Pushpajit A. Khaire ◽  
Roshan R. Kotkondawar

Study on Video and Image segmentation is currently limited by the lack of evaluation metrics and benchmark datasets that covers the large variety of sub-problems appearing in image and video segmentation. Proposed chapter provides an analysis of Evaluation Metrics, Datasets for Image and Video Segmentation methods. Importance is on wide-ranging, Datasets robust Metrics which used for evaluation purposes without inducing any bias towards the evaluation results. Introductory Section discusses traditional image and video segmentation methods available, the importance and need of measures, metrics and dataset required to evaluate segmentation algorithms are discussed in next section. Main focus of the chapter explains the measures, metrics and dataset available for evaluation of segmentation techniques of both image and video. The goal is to provide details about a set of impartial datasets and evaluation metrics and to leave the final evaluation of the evaluation process to the understanding of the reader.

2018 ◽  
pp. 1182-1207
Author(s):  
Pushpajit A. Khaire ◽  
Roshan R. Kotkondawar

Study on Video and Image segmentation is currently limited by the lack of evaluation metrics and benchmark datasets that covers the large variety of sub-problems appearing in image and video segmentation. Proposed chapter provides an analysis of Evaluation Metrics, Datasets for Image and Video Segmentation methods. Importance is on wide-ranging, Datasets robust Metrics which used for evaluation purposes without inducing any bias towards the evaluation results. Introductory Section discusses traditional image and video segmentation methods available, the importance and need of measures, metrics and dataset required to evaluate segmentation algorithms are discussed in next section. Main focus of the chapter explains the measures, metrics and dataset available for evaluation of segmentation techniques of both image and video. The goal is to provide details about a set of impartial datasets and evaluation metrics and to leave the final evaluation of the evaluation process to the understanding of the reader.


2011 ◽  
Vol 07 (01) ◽  
pp. 155-171 ◽  
Author(s):  
H. D. CHENG ◽  
YANHUI GUO ◽  
YINGTAO ZHANG

Image segmentation is an important component in image processing, pattern recognition and computer vision. Many segmentation algorithms have been proposed. However, segmentation methods for both noisy and noise-free images have not been studied in much detail. Neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interaction with different ideational spectra. However, neutrosophic set needs to be specified and clarified from a technical point of view for a given application or field to demonstrate its usefulness. In this paper, we apply neutrosophic set and define some operations. Neutrosphic set is integrated with an improved fuzzy c-means method and employed for image segmentation. A new operation, α-mean operation, is proposed to reduce the set indeterminacy. An improved fuzzy c-means (IFCM) is proposed based on neutrosophic set. The computation of membership and the convergence criterion of clustering are redefined accordingly. We have conducted experiments on a variety of images. The experimental results demonstrate that the proposed approach can segment images accurately and effectively. Especially, it can segment the clean images and the images having different gray levels and complex objects, which is the most difficult task for image segmentation.


2013 ◽  
Vol 860-863 ◽  
pp. 2888-2891
Author(s):  
Yu Bing Dong ◽  
Ming Jing Li ◽  
Ying Sun

Thresholding is one of the critical steps in pattern recognition and has a significant effect on the upcoming steps of image application, the important objectives of thresholding are as follows, and separating objects from background, decreasing the capacity of data consequently increases speed. Various threshold segmentation methods are studied. These methods are compared by using MATLAB7.0. The qualities of image segmentation are elaborated. The results show that iterative threshold segmentation method is better than others.


2012 ◽  
Vol 220-223 ◽  
pp. 1292-1297
Author(s):  
Xing Ma ◽  
Jun Li Han ◽  
Chang Shun Liu

In recent years, the gray-scale thresholding segmentation has emerged as a primary tool for image segmentation. However, the application of segmentation algorithms to an image is often disappointing. Based on the characteristics analysis of infrared image, this paper develops several gray-scale thresholding segmentation methods capable of automatic segmentation in regions of pedestrians of infrared image. The approaches of gray-scale thresholding segmentation method are described. Then the experimental system is established by using the infrared CCD device for pedestrian image detection. The image segmentation results generated by the algorithm in the experiment demonstrate that the Otsu thresholding segmentation method has achieved a kind of algorithm on automatic detection and segmentation of infrared image information in regions of interest of image.


2011 ◽  
Vol 341-342 ◽  
pp. 710-713
Author(s):  
Yan Li Liu ◽  
Hua Jiang ◽  
Gang Xu

This paper discusses the uncertainty in remote sensing image segmentation by studying the uncertainty in cloud model , qualitative to quantitative conversion, proposed one way to study the image segmentation based on the combination of Parallel mechanism and cloud mode. Proved by experiments, this method can better describe the uncertainty of image target. It can quickly and accurately segment the target, the efficiency is far superior then the traditional image segmentation algorithms.


Author(s):  
PUSHPAJIT A. KHAIRE. ◽  
NILESHSINGH V. THAKUR

Image segmentation is a puzzled problem even after four decades of research. Research on image segmentation is currently conducted in three levels. Development of image segmentation methods, evaluation of segmentation algorithms and performance and study of these evaluation methods. Hundreds of techniques have been proposed for segmentation of natural images, noisy images, medical images etc. Currently most of the researchers are evaluating the segmentation algorithms using ground truth evaluation of (Berkeley segmentation database) BSD images. In this paper an overview of various segmentation algorithms is discussed. The discussion is mainly based on the soft computing approaches used for segmentation of images without noise and noisy images and the parameters used for evaluating these algorithms. Some of these techniques used are Markov Random Field (MRF) model, Neural Network, Clustering, Particle Swarm optimization, Fuzzy Logic approach and different combinations of these soft techniques.


Author(s):  
Chao Zeng ◽  
Wenjing Jia ◽  
Xiangjian He ◽  
Min Xu

Image segmentation techniques using graph theory has become a thriving research area in computer vision community in recent years. This chapter mainly focuses on the most up-to-date research achievements in graph-based image segmentation published in top journals and conferences in computer vision community. The representative graph-based image segmentation methods included in this chapter are classified into six categories: minimum-cut/maximum-flow model (called graph-cut in some literatures), random walk model, minimum spanning tree model, normalized cut model and isoperimetric graph partitioning. The basic rationales of these models are presented, and the image segmentation methods based on these graph-based models are discussed as the main concern of this chapter. Several performance evaluation methods for image segmentation are given. Some public databases for testing image segmentation algorithms are introduced and the future work on graph-based image segmentation is discussed at the end of this chapter.


Author(s):  
Yu-Jin Zhang

The history of segmentation of digital images using computers could be traced back 40 years. Since then, this field has evolved very quickly and has undergone great change. In this chapter, the position of image segmentation in the general scope of image techniques is first introduced; the formal definition and extension of image segmentation as well as three layers of research on image segmentation are then explained. Based on the introduction and explanations, statistics for a number of developed algorithms is provided, the scheme for classifying different segmentation algorithms is discussed and a summary of existing survey papers for image segmentation is presented. These discussions provide a general rendering of research and development of image segmentation in the last 40 years.


2020 ◽  
Author(s):  
Wallace Casaca ◽  
Gabriel Taubin ◽  
Luis Gustavo Nonato

Interactive segmentation methods have gained much attention lately, specially due to their good performance in segmenting complex images and easy utilization. However, most interactive segmentation algorithms rely on sophisticated mathematical formulations whose effectiveness highly depends on the kind of image to be processed. In fact, sharp adherence to the contours of image segments, uniqueness of solution, high computational burden, and extensive user interaction are some of the weaknesses of most existing methods. In this thesis we proposed two novel interactive image segmentation techniques that sort out the issues raised above. The proposed methods rely on Laplace operators, spectral graph theory, and optimization schemes towards enabling highly accurate segmentation tools which demand a reduced amount of user interaction while still being mathematically simple and computationally efficient. The good performance of our segmentation algorithms is attested by a comprehensive set of comparisons against representative state-of-the-art methods. As additional contribution, we have also proposed two new algorithms for inpainting and photo colorization, both of which rely on the accuracy of our segmentation apparatus


2020 ◽  
Vol 6 (4) ◽  
pp. 355-384
Author(s):  
Hiba Ramadan ◽  
Chaymae Lachqar ◽  
Hamid Tairi

AbstractImage segmentation is one of the most basic tasks in computer vision and remains an initial step of many applications. In this paper, we focus on interactive image segmentation (IIS), often referred to as foreground-background separation or object extraction, guided by user interaction. We provide an overview of the IIS literature by covering more than 150 publications, especially recent works that have not been surveyed before. Moreover, we try to give a comprehensive classification of them according to different viewpoints and present a general and concise comparison of the most recent published works. Furthermore, we survey widely used datasets, evaluation metrics, and available resources in the field of IIS.


Sign in / Sign up

Export Citation Format

Share Document