Challenges of Semantic 3D City Models

3D Printing ◽  
2017 ◽  
pp. 296-305
Author(s):  
Roland Billen ◽  
Anne-Françoise Cutting-Decelle ◽  
Claudine Métral ◽  
Gilles Falquet ◽  
Sisi Zlatanova ◽  
...  

This technical paper is a contribution to the identification of current challenges of semantic 3D city models. They are presented in four parts, namely 3D enriched city models and their connection with urban information models and smartcities, urban models integration, urban analyses and data. This work is an output of the COST Action TU0801 “Semantic Enrichment of 3D city models for sustainable urban development”.

2015 ◽  
Vol 4 (2) ◽  
pp. 68-76 ◽  
Author(s):  
Roland Billen ◽  
Anne-Françoise Cutting-Decelle ◽  
Claudine Métral ◽  
Gilles Falquet ◽  
Sisi Zlatanova ◽  
...  

This technical paper is a contribution to the identification of current challenges of semantic 3D city models. They are presented in four parts, namely 3D enriched city models and their connection with urban information models and smartcities, urban models integration, urban analyses and data. This work is an output of the COST Action TU0801 “Semantic Enrichment of 3D city models for sustainable urban development”.


Author(s):  
G. S. Floros ◽  
C. Ellul ◽  
E. Dimopoulou

<p><strong>Abstract.</strong> Applications of 3D City Models range from assessing the potential output of solar panels across a city to determining the best location for 5G mobile phone masts. While in the past these models were not readily available, the rapid increase of available data from sources such as Open Data (e.g. OpenStreetMap), National Mapping and Cadastral Agencies and increasingly Building Information Models facilitates the implementation of increasingly detailed 3D Models. However, these sources also generate integration challenges relating to heterogeneity, storage and efficient management and visualization. CityGML and IFC (Industry Foundation Classes) are two standards that serve different application domains (GIS and BIM) and are commonly used to store and share 3D information. The ability to convert data from IFC to CityGML in a consistent manner could generate 3D City Models able to represent an entire city, but that also include detailed geometric and semantic information regarding its elements. However, CityGML and IFC present major differences in their schemas, rendering interoperability a challenging task, particularly when details of a building’s internal structure are considered (Level of Detail 4 in CityGML). The aim of this paper is to investigate interoperability options between the aforementioned standards, by converting IFC models to CityGML LoD 4 Models. The CityGML Models are then semantically enriched and the proposed methodology is assessed in terms of model’s geometric validity and capability to preserve semantics.</p>


2020 ◽  
Vol 9 (9) ◽  
pp. 502 ◽  
Author(s):  
Francesca Noardo ◽  
Lars Harrie ◽  
Ken Arroyo Ohori ◽  
Filip Biljecki ◽  
Claire Ellul ◽  
...  

The integration of 3D city models with Building Information Models (BIM), coined as GeoBIM, facilitates improved data support to several applications, e.g., 3D map updates, building permits issuing, detailed city analysis, infrastructure design, context-based building design, to name a few. To solve the integration, several issues need to be tackled and solved, i.e., harmonization of features, interoperability, format conversions, integration of procedures. The GeoBIM benchmark 2019, funded by ISPRS and EuroSDR, evaluated the state of implementation of tools addressing some of those issues. In particular, in the part of the benchmark described in this paper, the application of georeferencing to Industry Foundation Classes (IFC) models and making consistent conversions between 3D city models and BIM are investigated, considering the OGC CityGML and buildingSMART IFC as reference standards. In the benchmark, sample datasets in the two reference standards were provided. External volunteers were asked to describe and test georeferencing procedures for IFC models and conversion tools between CityGML and IFC. From the analysis of the delivered answers and processed datasets, it was possible to notice that while there are tools and procedures available to support georeferencing and data conversion, comprehensive definition of the requirements, clear rules to perform such two tasks, as well as solid technological solutions implementing them, are still lacking in functionalities. Those specific issues can be a sensible starting point for planning the next GeoBIM integration agendas.


Author(s):  
P. A. Ruben ◽  
R. Sileryte ◽  
G. Agugiaro

Abstract. Urban mining aims at reusing building materials enclosed in our cities. Therefore, it requires accurate information on the availability of these materials for each separate building. While recent publications have demonstrated that such information can be obtained using machine learning and data fusion techniques applied to hyperspectral imagery, challenges still persist. One of these is the so-called ’salt-and-pepper noise’, i.e. the oversensitivity to the presence of several materials within one pixel (e.g. chimneys, roof windows). For the specific case of identifying roof materials, this research demonstrates the potential of 3D city models to identify and filter out such unreliable pixels beforehand. As, from a geometrical point of view, most available 3D city models are too generalized for this purpose (e.g. in CityGML Level of Detail 2), semantic enrichment using a point cloud is proposed to compensate missing details. So-called deviations are mapped onto a 3D building model by comparing it with a point cloud. Seeded region growing approach based on distance and orientation features is used for the comparison. Further, the results of a validation carried out for parts of Rotterdam and resulting in KHAT values as high as 0.7 are discussed.


2020 ◽  
Vol 25 ◽  
pp. 145-159
Author(s):  
Nataša Urošević ◽  
Danijela Grubišić

The paper will elaborate on the current situation and development perspectives in selected Croatian historic towns, reflecting upon innovative models of urban regeneration and social revitalization. Looking for new urban models in the challenging global context, the authors applied the concept of cultural economy or the economics of uniqueness, which connects sustainable urban development with strategic mobilisation of unique local cultural resources. As a case study, the current situation in the cities of Pula and Šibenik (Croatia) was elaborated, which are characterized by the transition from former military and industrial urban models to cultural tourism destinations.


Author(s):  
O. Wysocki ◽  
B. Schwab ◽  
L. Hoegner ◽  
T. H. Kolbe ◽  
U. Stilla

Abstract. Nowadays, the number of connected devices providing unstructured data is rapidly rising. These devices acquire data with a temporal and spatial resolution at an unprecedented level creating an influx of geoinformation which, however, lacks semantic information. Simultaneously, structured datasets like semantic 3D city models are widely available and assure rich semantics and high global accuracy but are represented by rather coarse geometries. While the mentioned downsides curb the usability of these data types for nowadays’ applications, the fusion of both shall maximize their potential. Since testing and developing automated driving functions stands at the forefront of the challenges, we propose a pipeline fusing structured (CityGML and HD Map datasets) and unstructured datasets (MLS point clouds) to maximize their advantages in the automatic 3D road space models reconstruction domain. The pipeline is a parameterized end-to-end solution that integrates segmentation, reconstruction, and modeling tasks while ensuring geometric and semantic validity of models. Firstly, the segmentation of point clouds is supported by the transfer of semantics from a structured to an unstructured dataset. The distinction between horizontal- and vertical-like point cloud subsets enforces a further segmentation or an immediate refinement while only adequately depicted models by point clouds are allowed. Then, based on the classified and filtered point clouds the input 3D model geometries are refined. Building upon the refinement, the semantic enrichment of the 3D models is presented. The deployment of a simulation engine for automated driving research and a city model database tool underlines the versatility of possible application areas.


Author(s):  
H. Eriksson ◽  
L. Harrie ◽  
J. M. Paasch

<p><strong>Abstract.</strong> The need for digital building information is increasing, both in the form of 3D city models (as geodata) and of more detailed building information models (BIM). BIM models are mainly used in the architecture, engineering and construction industry, but have recently become interesting also for municipalities. The overall aim of this paper is to study one way of dividing a building, namely the division of a building into building parts in both 3D city models and in BIM models. The study starts by an inventory of how building parts are defined in 3D city model standards (CityGML, the INSPIRE building specification and a Swedish national specification for buildings) and in BIM models (Industry Foundation Classes, IFC). The definition of building parts in these specifications are compared and evaluated. The paper also describes potential applications for the use of building parts, on what grounds a building could be divided into building parts, advantages and disadvantages of having building parts and what consequences it can have on the usage of the building information. One finding is that building parts is defined similar, but not identical in the studied geodata specifications and there are no requirements, only recommendations on how buildings should be divided into building parts. This can complicate the modelling, exchange and reuse of building information, and in a longer perspective, it would be desirable to have recommendations of how to define and use building parts in for example a national context.</p>


Author(s):  
Francesca Noardo ◽  
Lars Harrie ◽  
Ken Arroyo Ohori ◽  
Filip Biljecki ◽  
Claire Ellul ◽  
...  

The integration of 3D city models with Building Information Models (BIM), abbreviated as GeoBIM, facilitates improved data support to several applications, e.g. 3D map updates, building permits issuing, detailed city analysis, infrastructure design, context-based building design, to name a few. To solve the integration, several issues need to be tackled and solved, i.e. harmonization of features, interoperability, format conversions, integration of procedures. The GeoBIM benchmark 2019, funded by ISPRS and EuroSDR, evaluated the state of implementation of tools addressing some of those issues. In particular, in the part of the benchmark described in this paper, the application of georeferencing to Industry Foundation Classes (IFC) models and making consistent conversions between 3D city models and BIM are investigated, considering the OGC CityGML and buildingSMART IFC as reference standards. In the benchmark, sample datasets in the two reference standards were provided. External volunteers were asked to describe and test georeferencing procedures for IFC models and conversion tools between CityGML and IFC. From the analysis of the delivered answers and processed datasets, it was possible to notice that while there are tools and procedures available to support georeferencing and data conversion, comprehensive definition of the requirements, clear rules to perform such two tasks, as well as solid technological solutions implementing them, are still lacking in functionalities. Those specific issues can be a sensible starting point for planning the next GeoBIM integration agendas.


Sign in / Sign up

Export Citation Format

Share Document