scholarly journals Non-Ionic Surfactant Vesicles (Niosomes) as New Drug Delivery Systems

2017 ◽  
pp. 154-184
Author(s):  
Abbas Pardakhty

Lipid vesicular systems composed of hydrated amphihiles with or without bilayer inducing agents such as cholesterol. On the basis of used amphiphilic molecule different nomenclature are used as liposomes, ufasomes and niosomes. Nonionic surfactants with mono-, di- or trialkyl chains form niosomes which are lipid vesicles with more chemical stability in comparison with phospholipids of liposomes. Both hydrophobic and hydrophilic chemicals can be encapsulated in niosomes as a new drug delivery system. This drug carrier system could have administered via injection, oral, pulmonary, vaginal, rectal, ophthalmic, nasal or transdermal routes with penetration enhancing potential. This chapter presents a detailed explain about niosome forming components, methods of preparation and routes of administration. Many examples for drug delivery potential of niosomes are also available in this review. Vaccine adjuvant and genetic substances vector capabilities are not given here.

Author(s):  
Abbas Pardakhty

Lipid vesicular systems composed of hydrated amphihiles with or without bilayer inducing agents such as cholesterol. On the basis of used amphiphilic molecule different nomenclature are used as liposomes, ufasomes and niosomes. Nonionic surfactants with mono-, di- or trialkyl chains form niosomes which are lipid vesicles with more chemical stability in comparison with phospholipids of liposomes. Both hydrophobic and hydrophilic chemicals can be encapsulated in niosomes as a new drug delivery system. This drug carrier system could have administered via injection, oral, pulmonary, vaginal, rectal, ophthalmic, nasal or transdermal routes with penetration enhancing potential. This chapter presents a detailed explain about niosome forming components, methods of preparation and routes of administration. Many examples for drug delivery potential of niosomes are also available in this review. Vaccine adjuvant and genetic substances vector capabilities are not given here.


Author(s):  
Anil Kumar Chilka ◽  
Vadithe Vasu Naik

The aim of this review is to present the structure of niosome, benefits and drawbacks, fundamentals of niosome preparation and characterization as well as a description of their applications in drug delivery. This review will provide an overview on the increasing interest on niosomes in the field of drug delivery. Drug delivery systems are defined as formulations aiming for transportation of a drug to the desired area of action within the body. The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Drug targeting is a kind of phenomenon in which drug gets distributed in the body in such a manner that the drug interacts with the target tissue at a cellular or subcellular level to achieve a desired therapeutic response at a desire site without undesirable interactions at other sites. This can be achieved by modern methods of targeting the drug delivery system such as niosomes. Niosomes are the type of non-ionic surfactant vesicles, which are biodegradable, non-toxic, more stable and inexpensive, a new approach to liposomes. Their structure similar to liposome and hence they can represent alternative vesicular systems with respect to liposomes. The niosomes have the tendency to load different type of drugs.


Drug Delivery ◽  
2013 ◽  
Vol 20 (7) ◽  
pp. 277-284 ◽  
Author(s):  
Tongyuan Lin ◽  
Qingying Fang ◽  
Daiyin Peng ◽  
Xia Huang ◽  
Tingting Zhu ◽  
...  

2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


2019 ◽  
Vol 16 (3) ◽  
pp. 258-265
Author(s):  
Kei Takahashi ◽  
Tomomi Masuda ◽  
Mitsunori Harada ◽  
Tadashi Inoue ◽  
Shinsuke Nakamura ◽  
...  

Objective: This study aimed to examine whether DC101 (anti-VEGFR2 antibody)- modified micelles have applications as novel drug delivery devices, which allow small molecule antiangiogenic agents to deliver to angiogenic sites on a murine laser-induced choroidal neovascularization (CNV) model. Materials and Method: CNV was induced by photocoagulation on the unilateral eye of each mouse under anesthesia. Immediately after laser coagulation, E7974-loaded DC101-modified micelles and motesanib-loaded DC101-modified micelles were intravitreally administrated. Two weeks after photocoagulation, CNV was visualized using fluorescein-conjugated dextran (MW=2,000 kDa), and the CNV area was measured in retinal pigment epithelium (RPE)-choroidal flat mounts. Results: Intravitreal administration of both DC101-modified micelles loaded with E7974 at 2 µM and motesanib at 2 µM significantly reduced CNV area in the murine laser-induced CNV model at a clearly lower concentration than the effective dose of each agent. Conclusion: These results suggest that DC101-modified micelle might be effective drug carrier system for treating CNV and other ocular angiogenic diseases.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Monica Terracciano ◽  
Luca De Stefano ◽  
Ilaria Rea

Diatom microalgae are the most outstanding natural source of porous silica. The diatom cell is enclosed in a three-dimensional (3-D) ordered nanopatterned silica cell wall, called frustule. The unique properties of the diatom frustule, including high specific surface area, thermal stability, biocompatibility, and tailorable surface chemistry, make diatoms really promising for biomedical applications. Moreover, they are easy to cultivate in an artificial environment and there is a large availability of diatom frustules as fossil material (diatomite) in several areas of the world. For all these reasons, diatoms are an intriguing alternative to synthetic materials for the development of low-cost drug delivery systems. This review article focuses on the possible use of diatom-derived silica as drug carrier systems. The functionalization strategies of diatom micro/nanoparticles for improving their biophysical properties, such as cellular internalization and drug loading/release kinetics, are described. In addition, the realization of hybrid diatom-based devices with advanced properties for theranostics and targeted or augmented drug delivery applications is also discussed.


2012 ◽  
Vol 32 (11) ◽  
pp. 2679-2690 ◽  
Author(s):  
Hiva Baradari ◽  
Chantal Damia ◽  
Maggy Dutreih-Colas ◽  
Etienne Laborde ◽  
Nathalie Pécout ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document