A Review of Niosomes as Novel Drug Delivery Systems

Author(s):  
Anil Kumar Chilka ◽  
Vadithe Vasu Naik

The aim of this review is to present the structure of niosome, benefits and drawbacks, fundamentals of niosome preparation and characterization as well as a description of their applications in drug delivery. This review will provide an overview on the increasing interest on niosomes in the field of drug delivery. Drug delivery systems are defined as formulations aiming for transportation of a drug to the desired area of action within the body. The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Drug targeting is a kind of phenomenon in which drug gets distributed in the body in such a manner that the drug interacts with the target tissue at a cellular or subcellular level to achieve a desired therapeutic response at a desire site without undesirable interactions at other sites. This can be achieved by modern methods of targeting the drug delivery system such as niosomes. Niosomes are the type of non-ionic surfactant vesicles, which are biodegradable, non-toxic, more stable and inexpensive, a new approach to liposomes. Their structure similar to liposome and hence they can represent alternative vesicular systems with respect to liposomes. The niosomes have the tendency to load different type of drugs.

2018 ◽  
Vol 8 (5) ◽  
pp. 35-43 ◽  
Author(s):  
Dhanvir Kaur ◽  
Sandeep Kumar

Drug targeting is a kind of phenomenon in which drug gets distributed in the body in such a manner that the drug interacts with the target tissue at a cellular or subcellular level to achieve a desired therapeutic response at a desire site without undesirable interactions at other sites. This can be achieved by modern methods of targeting the drug delivery system such as niosomes. Niosomes are the type of non-ionic surfactant vesicles, which are biodegradable, non-toxic, more stable and inexpensive, a new approach to liposomes. Their structure similar to liposome and hence they can represent alternative vesicular systems with respect to liposomes. The niosomes have the tendency to load different type of drugs. This review article represents the structure of niosome, advantages, disadvantages, the methods for  niosome preparation and characterization of pharmaceutical NSVs. Keywords:  Niosome, Cholesterol, Hydrophilic and Lipophilic drugs, Surfactant, Targeted delivery Bioavailability Improvement, Factors, Applications.


2018 ◽  
Vol 8 (6) ◽  
pp. 335-341 ◽  
Author(s):  
Sudhir Kumar Ray ◽  
Nargish Bano ◽  
Tripti Shukla ◽  
Neeraj Upmanyu ◽  
Sharad P. Pandey ◽  
...  

Target-specific drug-delivery systems for the administration of pharmaceutical compounds enable the localization of drugs to target sites within the body.  The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Niosome are microscopic non-ionic surfactant bilayer vesicles obtained on hydration of synthetic nonionic surfactants, with or without incorporation of cholesterol or their lipids. The amphiphilic nature of niosomes promotes their efficiency in encapsulating lipophilic or hydrophilic drugs.  Noisome are promising vehicle for drug delivery and being non-ionic, more stable, inexpensive, biodegradable, biocompatible, non immunogenic and exhibit flexibility in their structural characterization. Various additives in niosomes include nonionic surfactant as film forming agent, cholesterol as stabilizing and rigidizing agent for the bilayer and various charge inducers which develop a charge on the surface of niosomes and stabilize the prepared formulation by the resulting repulsive forces. Niosomes have been widely evaluated for controlled release and targeted delivery for the treatment of cancer, viral infections, microbial diseases, psoriasis, leishmaniasis, migraine, parkinson and other diseases. Niosomes can prolong the circulation of the entrapped drug in body. Encapsulation of drug in vesicular system can be predicted to prolong the existence of drug in the systemic circulation and enhance penetration into target tissue, perhaps reduce toxicity if selective uptake can be achieved. In addition to conventional, oral and parenteral routes, they are amenable to be delivered by ocular, transdermal, vaginal and inhalation routes. Delivery of biotechnological products including vaccine delivery with niosomes is also an interesting and promising research area. More concerted research efforts, however, are still required to realize the full potential of these novel systems. This review article focuses on the concept of niosomes, advantages and disadvantages, composition, method of preparation, separation of unentrapped drug, factors influencing the niosomal formulation and characterization, marketed formulations of niosomes and also gives up to date information regarding recent applications of niosomes in drug delivery. Keyword:  Drug-delivery system, Niosomes, 


Author(s):  
Mehta Abhinav ◽  
Jain Neha ◽  
Grobler Anne ◽  
Vandana Bharti

Novel drug delivery systems (NDDS) are one of the most strategies which enable to overcome the problems related to drug bioavailability. It is the rate and extent to which a drug becomes available to the target tissue after its administration. Most of the new drugs used today have poor bioavailability and are required to be administered at higher doses because only a small fraction of the administered dose is absorbed in the systemic circulation and able to reach the target site. This results in the wastage of major amount of drug and lead to adverse effects. Pharmaceutical technology mainly focuses on enhancing the solubility and permeability of drugs with lower bioavailability. Nanotechnology is the concept used in NDDS that enables a weight reduction of drug particles accompanied by an increase in stability and improved functionality. Various approaches such as nanosuspensions, liposomes, niosomes, nanoemulsions, cubosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), cyclodextrins, phytosome etc., are used for the enhancement of bioavailability. The present review focuses on the different approaches used for bioavailability enhancement along with their advantages and disadvantages.


Drug Delivery ◽  
2013 ◽  
Vol 20 (7) ◽  
pp. 277-284 ◽  
Author(s):  
Tongyuan Lin ◽  
Qingying Fang ◽  
Daiyin Peng ◽  
Xia Huang ◽  
Tingting Zhu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 279-285 ◽  
Author(s):  
Priyanka Chaurasiya ◽  
Eisha Ganju ◽  
Neeraj Upmanyu ◽  
Sudhir Kumar Ray ◽  
Prabhat Jain

Novel drug delivery systems are now a days is creating a new interest in development of drug deliveries. Vesicular drug delivery system is also a part of these novel drug delivery systems. TDDS is the permeability of the skin, it is permeable to small molecules, lipophilic drug and highly impermeable to the macromolecules and hydrophilic drugs. Recent approaches have resulted in design of two vesicular carriers, ethosomes and ultra flexible lipid based elastic vesicles, transferosomes. Transferosomes have recently been introduced, which are capable of transdermal delivery of low as well as high molecular weight drugs. This offers several potential advantages over conventional routes like avoidance of first pass metabolism, predictable and extended duration of activity, minimizing undesirable side effects, utility of short half life drugs, improving physiological and pharmacological response and have been applied to increases the efficiency of the material transfer across the intact skin, by the use of penetration enhancers, iontophoresis, sonophoresis and use of colloidal carriers such as lipid vesicles (liposomes & proliposomes) and non-ionic surfactant vesicles (niosomes & proniosomes). It is suitable for controlled and targeted drug delivery and it can accommodate drug molecules with wide range of solubility. Due to its high deformability it gives better penetration of intact vesicles. They are biocompatible and biodegradable as they are made from natural phospholipids and have high entrapment efficiency. The preparation variables are depending upon the procedure involved for manufacturing of formulation and the preparation procedure was accordingly optimized and validated. Characterization of transferosomes can be done to know the vesicle size, morphology, drug content, entrapment efficiency, penetration ability, occlusion effect, surface charge, in vitro drug release, in vitro skin penetration etc., It increases stability of labile drugs and provides control release. Transferosomes thus differs from such more conventional vesicles primarily by its softer, more deformable, better adjustable artificial membrane. Keywords: Novel Drug Delivery System, Biocompatible, Characterization, Transferosomes.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 100-104 ◽  
Author(s):  
Abhay Kumar

Novel drug delivery systems are now a day is creating a new interest in development of drug deliveries. The transdermal route of drug delivery has gained great interest of pharmaceutical research, as it circumvents number of problems associated with oral route of drug administration. Transferosomes are capable of transdermal delivery of low as well as high molecular weight drugs. This offers several potential advantages over conventional routes like avoidance of first pass metabolism, predictable and extended duration of activity, minimizing undesirable side effects, utility of short half life drugs, improving physiological and pharmacological response and have been applied to increases the efficiency of the material transfer across the intact skin, by the use of penetration enhancers and non-ionic surfactant vesicles. It is suitable for controlled and targeted drug delivery and it can accommodate drug molecules with wide range of solubility. Due to its high deformability it gives better penetration of intact vesicles. Transferosome possess an infrastructure consisting of hydrophobic and hydrophilic moieties together and as a result can accommodate drug molecules with wide range of solubility. They are biocompatible and biodegradable as they are made from natural phospholipids and have high entrapment efficiency. In this review, we have focused on transferosome with discussions on novel drug delivery systems for targeted delivery of therapeutics and important issues and challenges for future clinical applications. Keywords: Novel drug delivery systems, Transferosomes, Transdermal drug delivery, Targeted drug delivery


2019 ◽  
Vol 11 (1) ◽  
pp. 7 ◽  
Author(s):  
Aiswarya M. U. ◽  
Keerthana Raju ◽  
Revathy B. Menon ◽  
Lakshmi V. S. ◽  
Sreeja C. Nair

The vesicular drug delivery systems are promising approaches to overthrown the problems of drugs having lesser bioavailability and rapid elimination from the body. The four type of lipid based drug delivery systems are: solid-lipid particulate system, emulsion based system, solid lipid tablet and vesicular system. Cryptosomes, a novel emerging vesicular drug delivery system which can overcome the disadvantages associated with conventional drug delivery systems like high stability, increased bioavailability, sustained release, decreased elimination of rapidly metabolizable drugs etc. The word Cryptosome was orginated from Greek word ‘’Crypto’’ means hidden and ‘’Soma’’ means body. It is formed from the mixture of phospholipids like distearoyl phosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG) with distearoylphosphatidylcholine. These entire information regarding its origin and formation is explained in Dinesh Kumar et al. Vesicular systems symbolizes the use of vesicles in the different fields as carrier system or additives. This review disclose various vesicular drug delivery system and point out the advancement of cryptosome in the world of drug delivery.This review would help researchers involved in the field of vesicular drug delivery.


RSC Advances ◽  
2016 ◽  
Vol 6 (14) ◽  
pp. 11266-11277 ◽  
Author(s):  
Zahra Beiranvand ◽  
Farhad Bani ◽  
Ali Kakanejadifard ◽  
Erik Laurini ◽  
Maurizio Fermeglia ◽  
...  

Since albumin is the main transporter and the most abundant protein in the blood, interactions between this protein and drug/gene nanocarriers are of great importance to ensure successful delivery to target tissue(s) in the body.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (5) ◽  
pp. 49-56 ◽  
Author(s):  
M.C. Garnett ◽  
S. Stolnik ◽  
S.E. Dunn ◽  
I. Armstrong ◽  
Wu Lin ◽  
...  

The development of biomaterials to treat, repair, or reconstruct the human body is an increasingly important component of materials research. Collaboration between materials researchers and their industrial and clinical partners is essential for the development of this complex field. To demonstrate the importance of these interactions, two articles in this issue focus on advances in biomaterials relating to the use of colloidal systems for transport, drug delivery, and other medical applications. These articles were coordinated by Dominique Muster (Université Louis Pasteur, Strasbourg) and Franz Burny (Hôpital Erasme, Brussels). The following is the second of these two articles.There are two important objectives in drug delivery research. The first is to maximize the effectiveness of drugs by increasing the amount of drug reaching the target tissue while sparing other tissues the deleterious effects of the drug. The second is to control the release of a drug, so that the period of optimal drug concentration in the target tissue is maximized. A numbe r of different Systems have been investigated to achieve these objectives, including soluble polymeric delivery Systems and a range of colloidal drug delivery forms such as liposomes, emulsions, micelles, microcapsules, microparticles, and nanoparticles. This article focuses on polymeric materials for the production of micro- or nanoparticle Systems for dru g delivery by injection, and their characterization and Performance in vivo.Colloidal particles have a number of advantages as drug delivery Systems; they are easy to prepare, have the potential for high drug loading, and release of the drug can be controlled. However, without surface modification, colloidal particles are difficult to target because they are directed largely to the liver and spieen after intravenous injection. The reasons for this can be found in the context of the body's defenses. In order to protect against disease, the body has a complex System to ensure that invading microorganisms are identified and neutralized at the earliest possible opportunity. Most parasitic or invading organisms which pose a threat are particulate in form, and thus any colloidal drug delivery System will have to evade detection by these mechanisms in order to reach its target.


2022 ◽  
Vol 24 (1) ◽  
pp. 48-60
Author(s):  
Avani K. Shewale ◽  
◽  
Akshay R. Yadav ◽  
Ashwini S. Jadhav ◽  
◽  
...  

Most common methods of delivery include the preferred topical (skin), transmucosal (nasal, buccal, sublingual, vaginal, ocular and rectal) and inhalation routes. The conventional dosage forms provide drug release immediately and it causes fluctuation of drug level in blood depending upon dosage form. Therefore to maintain the drug concentration within therapeutically effective range needs novel drug delivery system. In the past few decades, considerable attention has been focused on the development of novel drug delivery system (NDDS). The NDDS should ideally fulfill two prerequisites. Firstly, it should deliver the drug at a rate directed by the needs of the body, over the period of treatment. Secondly, it should channel the active entity to the site of action. In conventional drug delivery systems, there is little or no control over release of the drug and effective concentration at the target site can be achieved by irregular administration of grossly excessive doses. At present, no available drug delivery system behaves ideally, but sincere attempts have been made to achieve them through various novel approaches in drug delivery.


Sign in / Sign up

Export Citation Format

Share Document