The Internet of Things and Assistive Technologies for People with Disabilities

Author(s):  
Hwa Lee

With the Americans with Disabilities Act (ADA), the past two decades have seen a proliferation of Assistive Technology (AT) and its enabling impact on the lives of people with disabilities in the areas of accessing information, communication, and daily living activities. Due to recent emergence of the Internet of Things (IoT), the fields of rehabilitation, healthcare, and education are challenged to incorporate the IoT applications into current AT services. While IoT applications continue to be developed and integrated into AT, they are still at a primitive stage where clear guidelines are yet to be developed and benefits are yet to be substantiated to ensure the quality of lives of people with disabilities. This chapter provides an overview of the IoT and AT integrated applications based on the building blocks of the IoT, along with recent trends and issues relevant to accessing technology for people with disabilities.

2017 ◽  
pp. 161-187 ◽  
Author(s):  
Hwa Lee

With the Americans with Disabilities Act (ADA), the past two decades have seen a proliferation of Assistive Technology (AT) and its enabling impact on the lives of people with disabilities in the areas of accessing information, communication, and daily living activities. Due to recent emergence of the Internet of Things (IoT), the fields of rehabilitation, healthcare, and education are challenged to incorporate the IoT applications into current AT services. While IoT applications continue to be developed and integrated into AT, they are still at a primitive stage where clear guidelines are yet to be developed and benefits are yet to be substantiated to ensure the quality of lives of people with disabilities. This chapter provides an overview of the IoT and AT integrated applications based on the building blocks of the IoT, along with recent trends and issues relevant to accessing technology for people with disabilities.


2021 ◽  
Vol 3 (1) ◽  
pp. 67-71
Author(s):  
Wei Shi ◽  
Xuejun (Jason) Liu ◽  
Yuan Xing

With the Americans with Disabilities Act (ADA), the past two decades have seen a proliferation of Assistive Technology (AT) and its enabling impact on the lives of people with disabilities in the areas of accessing information, communication, and daily living activities. Due to recent emergence of the Internet of Things (IoT), the research of assistive robotics has been contributing to assisting humans to manipulate and communicate with the robot in complex unstructured environments. The ongoing revolution of Internet of Things (IoT), together with the growing diffusion of robots applied in everyday life and industry, makes Internet of Robotic Things (IoRT) as the future direction for assistive robotics research. New advanced technologies and services are explored in assisting humans. This study provides an overview of the IoT and applications into robotics based on the building blocks of the IoT, along with recent trends and issues relevant to accessing technology for people with disabilities. This research also discusses the technologies in IoT that would benefit the applications of assistive robotics. The most important research challenges to be faced are also highlighted.


2021 ◽  
Vol 9 (1) ◽  
pp. 912-931
Author(s):  
Pavan Madduru

To meet the growing demand for mobile data traffic and the stringent requirements for Internet of Things (IoT) applications in emerging cities such as smart cities, healthcare, augmented / virtual reality (AR / VR), fifth-generation assistive technologies generation (5G) Suggest and use on the web. As a major emerging 5G technology and a major driver of the Internet of Things, Multiple Access Edge Computing (MEC), which integrates telecommunications and IT services, provides cloud computing capabilities at the edge of an access network. wireless (RAN). By providing maximum compute and storage resources, MEC can reduce end-user latency. Therefore, in this article we will take a closer look at 5G MEC and the Internet of Things. Analyze the main functions of MEC in 5G and IoT environments. It offers several core technologies that enable the use of MEC in 5G and IoT, such as cloud computing, SDN / NFV, information-oriented networks, virtual machines (VMs) and containers, smart devices, shared networks and computing offload. This article also provides an overview of MEC's ​​role in 5G and IoT, a detailed introduction to MEC-enabled 5G and IoT applications, and future perspectives for MEC integration with 5G and IoT. Additionally, this article will take a closer look at the MEC research challenges and unresolved issues around 5G and the Internet of Things. Finally, we propose a use case that MEC uses to obtain advanced intelligence in IoT scenarios.


2021 ◽  
Vol 1 ◽  
pp. 12
Author(s):  
Thomas Batz ◽  
Reinhard Herzog ◽  
Jon Summers ◽  
Kym Watson

The Internet of Things (IoT) domain has been one of the fastest growing areas in the computer industry for the last few years. Consequently, IoT applications are becoming the dominant work load for many data centers. This has implications for the designers of data centers, as they need to meet their customers' requirements. Since it is not easy to use real applications for the design and test of data center setups, a tool is required to emulate real applications but is easy to configure, scale and deploy in a data center. This paper will introduce a simple but generic way to model the work load of typical IoT applications, in order to have a realistic and reproducible way to emulate IT loads for data centers. IoT application designers are in the process of harmonizing their approaches on how architectures should look, which building blocks are needed, and how they should interwork. While all IoT subdomains are diverse when it comes to the details, the architectural blueprints are becoming more and more aligned. These blueprints are called reference architectures and incorporate similar patterns for the underlying application primitives. This paper will introduce an approach to decompose IoT applications into such application primitives, and use them to emulate a workload as it would be created by the modeled application. The paper concludes with an example application of the IoT Workload Emulation in the BodenTypeDC experiment, where new cooling approaches for data centers have been tested under realistic work load conditions.


Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
S. A. Zhezhkun ◽  
◽  
L. B. Veksler ◽  
S. M. Brezitsʹkyy ◽  
B. O. Tarasyuk

This article focuses on the analysis of promising technologies for long-range traffic transmission for the implementation of the Internet of Things. The result of the review of technical features of technologies, their advantages and disadvantages is given. A comparative analysis was performed. An analysis is made that in the future heterogeneous structures based on the integration of many used radio technologies will play a crucial role in the implementation of fifth generation networks and systems. The Internet of Things (IoT) is heavily affecting our daily lives in many domains, ranging from tiny wearable devices to large industrial systems. Consequently, a wide variety of IoT applications have been developed and deployed using different IoT frameworks. An IoT framework is a set of guiding rules, protocols, and standards which simplify the implementation of IoT applications. The success of these applications mainly depends on the ecosystem characteristics of the IoT framework, with the emphasis on the security mechanisms employed in it, where issues related to security and privacy are pivotal. In this paper, we survey the security of the main IoT frameworks, a total of 8 frameworks are considered. For each framework, we clarify the proposed architecture, the essentials of developing third-party smart apps, the compatible hardware, and the security features. Comparing security architectures shows that the same standards used for securing communications, whereas different methodologies followed for providing other security properties.


2020 ◽  
Author(s):  
Anbiao Huang ◽  
Shuo Gao ◽  
Arokia Nathan

In Internet of Things (IoT) applications, among various authentication techniques, keystroke authentication methods based on a user’s touch behavior have received increasing attention, due to their unique benefits. In this paper, we present a technique for obtaining high user authentication accuracy by utilizing a user’s touch time and force information, which are obtained from an assembled piezoelectric touch panel. After combining artificial neural networks with the user’s touch features, an equal error rate (EER) of 1.09% is achieved, and hence advancing the development of security techniques in the field of IoT.


Author(s):  
Syed Husain ◽  
Athul Prasad ◽  
Andreas Kunz ◽  
Apostolos Papageorgiou ◽  
JaeSeung Song

Author(s):  
Mahmoud Elkhodr ◽  
Seyed Shahrestani ◽  
Hon Cheung

The Internet of Things (IoT) brings connectivity to about every objects found in the physical space. It extends connectivity not only to computer and mobile devices but also to everyday objects. From connected fridges, cars and cities, the IoT creates opportunities in numerous domains. This chapter briefly surveys some IoT applications and the impact the IoT could have on societies. It shows how the various application of the IoT enhances the overall quality of life and reduces management and costs in various sectors.


Author(s):  
Md Alimul Haque ◽  
Shameemul Haque ◽  
Kailash Kumar ◽  
Narendra Kumar Singh

The role of the internet of things (IoT) and cyberspace in a digital society is well recognized, and they have become tremendously popular due to certain features like the ability to ease the operational process of businesses and instant communication. Recent developments in the fields of wireless communication networks like 4G, 5G, and 6G with IoT applications have greatly benefited human welfare. Still, the rapid growth of various IoT applications focuses on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. It has also contributed to unethical practices by hackers who use new tools and techniques to penetrate more complex or well-controlled environments and produce increased damage and even remain under the cover. The main objective of this chapter is to improve understanding of the challenges to secure future digital infrastructure while it is still evolving. In this context, a detailed review of the security-related issues, challenges, threats, and countermeasures in the IoT applications is presented.


Author(s):  
Laura Belli ◽  
Simone Cirani ◽  
Luca Davoli ◽  
Gianluigi Ferrari ◽  
Lorenzo Melegari ◽  
...  

The Internet of Things (IoT) will consist of billions (50 billions by 2020) of interconnected heterogeneous devices denoted as “Smart Objects:” tiny, constrained devices which are going to be pervasively deployed in several contexts. To meet low-latency requirements, IoT applications must rely on specific architectures designed to handle the gigantic stream of data coming from Smart Objects. This paper propose a novel Cloud architecture for Big Stream applications that can efficiently handle data coming from Smart Objects through a Graph-based processing platform and deliver processed data to consumer applications with low latency. The authors reverse the traditional “Big Data” paradigm, where real-time constraints are not considered, and introduce the new “Big Stream” paradigm, which better fits IoT scenarios. The paper provides a performance evaluation of a practical open-source implementation of the proposed architecture. Other practical aspects, such as security considerations, and possible business oriented exploitation plans are presented.


Sign in / Sign up

Export Citation Format

Share Document