scholarly journals ARTIFICIAL INTELLIGENCE AS A SERVICE IN DISTRIBUTED MULTI ACCESS EDGE COMPUTING ON 5G EXTRACTING DATA USING IOT AND INCLUDING AR/VR FOR REAL-TIME REPORTING

2021 ◽  
Vol 9 (1) ◽  
pp. 912-931
Author(s):  
Pavan Madduru

To meet the growing demand for mobile data traffic and the stringent requirements for Internet of Things (IoT) applications in emerging cities such as smart cities, healthcare, augmented / virtual reality (AR / VR), fifth-generation assistive technologies generation (5G) Suggest and use on the web. As a major emerging 5G technology and a major driver of the Internet of Things, Multiple Access Edge Computing (MEC), which integrates telecommunications and IT services, provides cloud computing capabilities at the edge of an access network. wireless (RAN). By providing maximum compute and storage resources, MEC can reduce end-user latency. Therefore, in this article we will take a closer look at 5G MEC and the Internet of Things. Analyze the main functions of MEC in 5G and IoT environments. It offers several core technologies that enable the use of MEC in 5G and IoT, such as cloud computing, SDN / NFV, information-oriented networks, virtual machines (VMs) and containers, smart devices, shared networks and computing offload. This article also provides an overview of MEC's ​​role in 5G and IoT, a detailed introduction to MEC-enabled 5G and IoT applications, and future perspectives for MEC integration with 5G and IoT. Additionally, this article will take a closer look at the MEC research challenges and unresolved issues around 5G and the Internet of Things. Finally, we propose a use case that MEC uses to obtain advanced intelligence in IoT scenarios.

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Feroz Khan A.B ◽  
◽  
Anandharaj G ◽  

The smart devices connected on the internet turn to be the internet of things, which connect other objects or devices through unique identifiers with the capability of transferring and receiving the information over the internet. There are numerous applications in different areas such as healthcare, home automation, transportation, military, agriculture, and still so many sectors that incorporate cutting-edge technologies of communication, networking, cloud computing, sensing, and actuation. With this huge increase in the number of connected devices, a strong security mechanism is required to protect the IoT devices. Hence, it is required to focus on the challenges and issues of IoT enabled applications to safeguard the entire network from the outside invasion. This paper discusses some of the challenges in building IoT applications, a detailed study of the existing security protocols, and its issues, and the potential of the IoT.


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Author(s):  
Hwa Lee

With the Americans with Disabilities Act (ADA), the past two decades have seen a proliferation of Assistive Technology (AT) and its enabling impact on the lives of people with disabilities in the areas of accessing information, communication, and daily living activities. Due to recent emergence of the Internet of Things (IoT), the fields of rehabilitation, healthcare, and education are challenged to incorporate the IoT applications into current AT services. While IoT applications continue to be developed and integrated into AT, they are still at a primitive stage where clear guidelines are yet to be developed and benefits are yet to be substantiated to ensure the quality of lives of people with disabilities. This chapter provides an overview of the IoT and AT integrated applications based on the building blocks of the IoT, along with recent trends and issues relevant to accessing technology for people with disabilities.


2020 ◽  
Author(s):  
Tanweer Alam ◽  
Mohamed Benaida

The internet of smart devices is a network of intelligent gadgets with sensors, programs, Wi-Fi and communication network connections. These devices store the data in cloud and process data outside the device using the proposed Cloud-Internet communication framework. These devices can communicate with other devices using the proposed framework. However, there are many challenges for communication security among the internet of smart devices. The Cloud can store the device data with security, reliability, privacy and service availability. The communication Security has been raised as one of the most critical issues of cloud computing where resolving such an issue would result in a constant growth in the use and popularity of cloud computing. Our purpose of this study is to create a framework for providing the communication security among smart devices network for the internet of things using cloud computing. Our main contribution links a new study for providing communication security for the internet of smart devices using the cloud-Internet framework. This study can be helpful for communication security problem in the framework of the Internet of Things. The proposed study generates a new framework for solving the issue of communication security among internet of smart devices.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2466 ◽  
Author(s):  
Maryam Naseer Malik ◽  
Muhammad Awais Azam ◽  
Muhammad Ehatisham-Ul-Haq ◽  
Waleed Ejaz ◽  
Asra Khalid

The Internet of Things is a rapidly growing paradigm for smart cities that provides a way of communication, identification, and sensing capabilities among physically distributed devices. With the evolution of the Internet of Things (IoTs), user dependence on smart systems and services, such as smart appliances, smartphone, security, and healthcare applications, has been increased. This demands secure authentication mechanisms to preserve the users’ privacy when interacting with smart devices. This paper proposes a heterogeneous framework “ADLAuth” for passive and implicit authentication of the user using either a smartphone’s built-in sensor or wearable sensors by analyzing the physical activity patterns of the users. Multiclass machine learning algorithms are applied to users’ identity verification. Analyses are performed on three different datasets of heterogeneous sensors for a diverse number of activities. A series of experiments have been performed to test the effectiveness of the proposed framework. The results demonstrate the better performance of the proposed scheme compared to existing work for user authentication.


Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) is aimed at modifying the life of people by adopting the possible computing techniques to the physical world, and thus transforming the computing environment from centralized form to decentralized form. Most of the smart devices receive the data from other smart devices over the network and perform actions based on their implemented programs. Thus, testing becomes an intensive process in the IoT that will require some normalization too. The composite architecture of IoT systems and their distinctive characteristics require different variants of testing to be done on the components of IoT systems. This chapter will discuss the necessity for IoT testing in terms of various criteria of identifying and fixing the problems in the IoT systems. In addition, this chapter examines the core components to be focused on IoT testing and testing scope based on IoT device classification. It also elaborates the various types of testing applied on healthcare IoT applications, and finally, this chapter summarizes the various challenges faced during IoT testing.


2022 ◽  
pp. 571-601
Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) is aimed at modifying the life of people by adopting the possible computing techniques to the physical world, and thus transforming the computing environment from centralized form to decentralized form. Most of the smart devices receive the data from other smart devices over the network and perform actions based on their implemented programs. Thus, testing becomes an intensive process in the IoT that will require some normalization too. The composite architecture of IoT systems and their distinctive characteristics require different variants of testing to be done on the components of IoT systems. This chapter will discuss the necessity for IoT testing in terms of various criteria of identifying and fixing the problems in the IoT systems. In addition, this chapter examines the core components to be focused on IoT testing and testing scope based on IoT device classification. It also elaborates the various types of testing applied on healthcare IoT applications, and finally, this chapter summarizes the various challenges faced during IoT testing.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 62 ◽  
Author(s):  
Jonnro Erasmus ◽  
Paul Grefen ◽  
Irene Vanderfeesten ◽  
Konstantinos Traganos

Industry 4.0 is expected to deliver significant gains in productivity by assimilating several technological advancements including cloud computing, the Internet-of-Things, and smart devices. However, it is unclear how these technologies should be leveraged together to deliver the promised benefits. We present the architecture design of an information system that integrates these technologies to support hybrid manufacturing processes, i.e., processes in which human and robotic workers collaborate. We show how well-structured architecture design is the basis for a modular, complex cyber-physical system that provides horizontal, cross-functional manufacturing process management and vertical control of heterogenous work cells. The modular nature allows the extensible cloud support enhancing its accessibility to small and medium enterprises. The information system is designed as part of the HORSE Project: a five-year research and innovation project aimed at making recent technological advancements more accessible to small and medium manufacturing enterprises. The project consortium includes 10 factories to represent the typical problems encountered on the factory floor and provide real-world environments to test and evaluate the developed information system. The resulting information system architecture model is proposed as a reference architecture for a manufacturing operations management system for Industry 4.0. As a reference architecture, it serves two purposes: (1) it frames the scientific inquiry and advancement of information systems for Industry 4.0 and (2) it can be used as a template to develop commercial-grade manufacturing applications for Industry 4.0.


Author(s):  
Aleksandar Tošić ◽  
Jernej Vičič ◽  
Michael David Burnard ◽  
Michael Mrissa

The Internet of Things (IoT) is experiencing widespread adoption across industry sectors ranging from supply chain management to smart cities, buildings, and health monitoring. However, most software architectures for IoT deployment rely on centralized cloud computing infrastructures to provide storage and computing power, as cloud providers have high economic incentives to organize their infrastructure into clusters. Despite these incentives, there has been a recent shift from centralized to decentralized architecture that harnesses the potential of edge devices, reduces network latency, and lowers infrastructure cost to support IoT applications. This shift has resulted in new edge computing architectures, but many still rely on centralized solutions for managing applications. A truly decentralized approach would offer interesting properties required for IoT use cases. To address these concerns, we introduce a decentralized architecture tailored for large scale deployments of peer-to-peer IoT sensor networks and capable of run-time application migration. The solution combines a blockchain consensus algorithm and verifiable random functions to ensure scalability, fault tolerance, transparency, and no single point of failure. We build on our previously presented theoretical simulations with many protocol improvements and an implementation tested in a use case related to monitoring a Slovenian cultural heritage building located in Bled, Slovenia.


2017 ◽  
pp. 260-277
Author(s):  
Mahmoud Elkhodr ◽  
Seyed Shahrestani ◽  
Hon Cheung

The Internet of Things (IoT) promises to revolute communications on the Internet. The IoT enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. It incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. This will result in the IoT being pervasive in many areas which raise many challenges. This chapter reviews the major research issues challenging the IoT with regard to security, privacy, and management.


Sign in / Sign up

Export Citation Format

Share Document