HVDC Cable Accessory Insulation

HVDC cables have shown great advantages for long-distance, high-power underground or underwater transmission. The performance of cable accessories, as an essential part of the HVDC networks, is a great concern to the reliability of the system. However, Cable accessories made of ethylene-propylene-diene terpolymer (EPDM), which are considered to be the weakest part of HVDC cable system, have to face the problem of space charge accumulation. Nanosized particles have been proved as an effective method to suppress the space charge accumulation in dielectric composites. This chapter presents a study aimed at clarifying the effect of nanoparticles and direct-fluorination on space charge behaviors for HVDC cable accessory insulation. Obtained results show that the dielectric properties and DC conduction for HVDC cable accessory insulation are significantly influenced and the interface charge density can be effectively suppressed by doped fillers.

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1033 ◽  
Author(s):  
Wei Dong ◽  
Xuan Wang ◽  
Zaixing Jiang ◽  
Bo Tian ◽  
Yuguang Liu ◽  
...  

Acetophenone can significantly improve the dielectric properties of polyethylene (PE) insulation materials. However, it easily migrates from the PE due to its poor compatibility with the material, which limits its application. In this paper, the functional units of acetophenone were modified in polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) by an acetylation reaction, and SEBS was used as the carrier to inhibit the migration of acetophenone. The number of functional units in the acetylated SEBS (Ac-SEBS) was measured by 1H NMR and the effect of the acetylation degree of SEBS on its compatibility with PE was studied. Meanwhile, the effects of Ac-SEBS on PE’s direct current (DC) breakdown strength and space charge accumulation characteristics were investigated. It is demonstrated that Ac-SEBS can significantly improve the field strength of the DC breakdown and inhibit the accumulation of space charge in the PE matrix. This work provides a new approach for the application of aromatic compounds as voltage stabilizers in DC insulation cable materials.


2010 ◽  
Vol 108 (9) ◽  
pp. 094113 ◽  
Author(s):  
Jun-Wei Zha ◽  
Zhi-Min Dang ◽  
Hong-Tao Song ◽  
Yi Yin ◽  
George Chen

2020 ◽  
Vol 140 (5) ◽  
pp. 276-284
Author(s):  
Maimi Mima ◽  
Tokihiro Narita ◽  
Hiroaki Miyake ◽  
Yasuhiro Tanaka ◽  
Masahiro Kozako ◽  
...  

Author(s):  
Ignazio Blanco ◽  
Traian Zaharescu

AbstractA series of ethylene-propylene-diene-terpolymer (EPDM)/polyhedral oligomeric silsesquioxane (POSS) composites at different percentage of POSS were prepared and subjected to γ-irradiation. Both irradiated and non-irradiated EPDM and composites were investigated by the means of thermal analysis to verify if the presence of POSS molecules is able to reduce the oxidation level of free radicals generated during the degradation and to evaluate the effects of the irradiation. EPDM composites at 1, 3 and 5 mass% of POSS were thus degraded in a thermogravimetric (TG) balance in dynamic heating conditions (25–700 °C), in both inert and oxidative atmosphere by flowing nitrogen and air respectively. Thermal characterization was then completed by carrying out Differential Scanning Calorimetry (DSC) analysis from sub-ambient to better highlight the melting of the polymer and polymer composites occurring just above the room temperature. FTIR spectroscopy was also performed for the prepared samples to check the presence of the molecular filler in the composites and for the TG’s residue at 700 °C, in order to evaluate its nature. DSC and TGA parameters were detected and discussed to have information about the effect of the degradation’s environment, the effect of irradiation on polymer stabilization and the effect of POSS content in the polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document