Endophytes and Their Role in Phytoremediation and Biotransformation Process

Author(s):  
Aparna Baban Gunjal ◽  
Meghmala S. Waghmode ◽  
Neha N. Patil ◽  
Balasaheb P. Kapadnis

This chapter discusses the endophytic bacteria and their role in agriculture. The endophytes help in the plant growth by various mechanisms and also help in disease control. The capability of colonizing internal host tissues of plant has made endophytic bacteria valuable for agriculture to improve crop performance. Various endophytic diazotrophic bacteria colonize primarily the root interior of graminaceous plants. The review also discusses the role of endophytes in phytoremediation and induced systemic resistance. Endophytes have found important role in the production of many bioactive compounds, which have various applications (e.g., antibiotics, antimicrobial compounds). The contributions of this research field will have economic and environmental impacts.

2021 ◽  
Vol 759 (1) ◽  
pp. 012025
Author(s):  
R Simarmata ◽  
Nuriyanah ◽  
L Nurjanah ◽  
J R L Sylvia ◽  
T Widowati

1991 ◽  
Vol 1 (1) ◽  
pp. 84-87 ◽  
Author(s):  
Mark A. Bennett ◽  
Nancy W. Callan ◽  
Vincent A. Fritz

Disease management is an important step in any crop establishment system. Emergence of field-seeded crops may take several weeks for many species and represents a vulnerable stage of plant growth. This paper considers various biological, chemical, and physical seed treatments for improved seed performance. The role of seed quality and cultural practices in seedling establishment also is reviewed. Multidisciplinary approaches to improving horticultural crop establishment are promising.


2020 ◽  
Vol 20 (1) ◽  
pp. 78-84
Author(s):  
Nur Prihatiningsih ◽  
Heru Adi Djatmiko ◽  
Puji Lestari

Screening of competent rice root endophytic bacteria to promote rice growth and bacterial leaf blight disease control. This study was aimed to collect isolate endophytic bacterial of rice roots which able to produce IAA, determine the effect of endophytic bacteria application in stimulating rice plant growth, and  evaluate the potential of rice root endophytic bacteria for controlling bacterial leaf blight. This reasearch was carried out at the Screen House, Plant Protection Laboratory, and Agrohorti Laboratory of the Agriculture Faculty, Jenderal Soedirman University. Isolation of rice root endophytic bacteria was carried out by purposive random sampling from several marginal lands. The results showed that 8 isolates of rice root endophytic bacteria were able to produce IAA, ranging from 57.56 to 79.33 ppm and B07 isolate from Serayu produced the highest amount of IAA. The B04 and B07 isolates were contributed to increase the rice plant growth. The application of rice root endophytic bacteria was effective in controlling bacterial leaf blight.


Author(s):  
V. Yu. Alekseev ◽  
S. Veselova ◽  
D. K. Blagova ◽  
E. R. Sarvarova ◽  
G. Burkhanova ◽  
...  

An important role of surfactin synthesis by endophytic bacteria in protecting wheat against cereal aphids has been shown to manifest itself in a direct insecticidal effect and an indirect effect through the induction of systemic resistance in plants.


2021 ◽  
Vol 25 (01) ◽  
pp. 01-10
Author(s):  
Muhammad Naveed

Plants show strong levels of resistance to an extensive range of pathogens on account of root colonization through plant growth-promoting rhizobacteria (PGPR), namely, induced systemic resistance (ISR). Little is known about bacterial determinants and plant signaling pathways that underpin ISR in cereal crops associated with ISR in dicotyledonous plants. The present study evaluates the potential of Pseudomonas spp. QAU-92 using site directed mutagenesis of the pqqC gene to elicit ISR in rice (Oryza sativa L.) against the fungal pathogen Cochliobolus miyabeanus. The comparison between the wild-type strain and the mutant strain for biochemical attributes, in vitro and in vivo antagonistic activity, carbon source utilization assay and in vivo analyses on rice (cv. C-039) revealed the statistically significant role of Pyrroloquinoline Quinone (PQQ) in plant growth promotion. RT-qPCR analysis revealed that the plant recognition of QAU-92 results in the activation of ethylene (ET) and jasmonic acid (JA) pathways and also shows clear differences in resistance against C. miyabeanus disease compared with the pqqC mutants (QAU92-2). The expression of TF 89 (EBP89), a susceptible gene, as well as the pathogenesis-related protein 1a (PR1a) were much higher in the infected control and pqqC mutant plant than in wild type inoculated plants. Hence, this study is the first of the kind that has investigated the expressional analysis of PQQ against antifungal activity, phosphate solubilization and the induced systemic resistance of QAU-92 against C. miyabeanus in rice. Additionally, PQQ genes may act as a key regulator of PR1a/ET cross-talk and its interference with the fungal manipulation of plants. © 2021 Friends Science Publishers


2021 ◽  
Vol 29 (4) ◽  
pp. 430-440
Author(s):  
Anuradha Bandopadhyay ◽  
Tina Roy ◽  
Nirmalendu Das

Cowpea, an annual legume, suffers from several disease symptoms caused by Macrophomina phaseolina. Rhizobacteria isolated from pesticide infested soil, identified by blast analysis as Bacillus cereus, Bacillus safensis, Pseudomonas donghuensis and Pseudomonas aeruginosa ascertained tolerant to at least 0.1% pesticides viz. methomyl, imidacloprid and carbendazim. In vitro antagonism against pathogen exhibited maximum by P. aeruginosa 63%. All rhizobacteria were bestowed with attributes responsible for pathogen control and plant growth promotion. Field evaluation resulted highest 75% disease control, enhancement of length, nodule counts, biomass or yield per plant by P. aeruginosa. All rhizobacteria induced systemic resistance in cowpea under challenged inoculation with pathogen by augmenting defensive enzyme production. Highest Phenylalanine Ammonia Lyase activity was expressed in P. aeruginosa treated plants 1.02 μMoles/ml/min, Polyphenol Oxidase by P. donghuensis 1.39 μMoles/ml/min, Chitinase by B. cereus 0.745 μMoles/ml/min and 400 percent relative activity of Peroxidase by P. aeruginosa. The rhizobacteria were prospective for plant disease control, growth promotion and as immunity boosters in pesticide and heavy metal infested toxic environment.


Sign in / Sign up

Export Citation Format

Share Document