Generative Systems in Information Visualization

Author(s):  
Ilona Nowosad

The author presents various approaches particularly in the field of visual arts and sound visualization based on hi-tech artificial agents and audiovisual systems. The number of digital artists and designers who tend to computational creativity has rapidly grown in recent years and their artworks and generative visuals that manifest the new cultural paradigm “Form Follows Data” meet with a wide interest. The author describes and presents a collection of tools and programming environments used for creating visual representations of sound as well as live coding visualizations which fall under so called generative art movement. Concepts of interactive audiovisual systems, sound-reactive programming software, and immersive environments refer to synergy of sound, visuals, and gestures. Another purpose is to point to applications of generative systems and agent-based frameworks in social and cognitive sciences to study environmental and social systems and their interactions.

Author(s):  
Wouter H. Vermeer ◽  
Justin D. Smith ◽  
Uri Wilensky ◽  
C. Hendricks Brown

AbstractPreventing adverse health outcomes is complex due to the multi-level contexts and social systems in which these phenomena occur. To capture both the systemic effects, local determinants, and individual-level risks and protective factors simultaneously, the prevention field has called for adoption of system science methods in general and agent-based models (ABMs) specifically. While these models can provide unique and timely insight into the potential of prevention strategies, an ABM’s ability to do so depends strongly on its accuracy in capturing the phenomenon. Furthermore, for ABMs to be useful, they need to be accepted by and available to decision-makers and other stakeholders. These two attributes of accuracy and acceptability are key components of open science. To ensure the creation of high-fidelity models and reliability in their outcomes and consequent model-based decision-making, we present a set of recommendations for adopting and using this novel method. We recommend ways to include stakeholders throughout the modeling process, as well as ways to conduct model verification, validation, and replication. Examples from HIV and overdose prevention work illustrate how these recommendations can be applied.


E-Management ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 50-60
Author(s):  
M. V. Samosudov

The formation and formation of the Industry 4.0 concept stimulated the discussion of the use of computer technology in various areas of economic activity and, in particular, in the automation of social systems management. The basis of the concept is the inclusion of a virtual image of the social system in the form of a mathematical model or a digital twin of the enterprise in the production and management system. At the same time, it should be noted that today digital twin are created mainly only for technical objects used in the activities of enterprises. The purpose of the article is to demonstrate the possibility of fixing organizational documents as one of the system-forming factors in the digital twin of an enterprise. This circumstance makes it possible, firstly, to more accurately calculate the managerial effects of managers by taking into account the impact of organizational documents on the activities of employees of the enterprise; secondly, to identify conflicts of documents developed by various departments of the company; thirdly, to calculate the content of documents during their development (design), based on the requirements of the situation or a given control effect. This possibility arises due to the use of a comprehensive mathematical model of the social system operating in an active environment. The model is a simulation agent-based model and allows you to calculate the dynamics of the social system in the socio-economic space, which allows its use in decision support systems by managers of any scale and activities to calculate the expected effect of management decisions – the specifics of a particular social system are taken into account by combining the values of the phase variables describing the state of the enterprise. The novelty of the research paper lies in the fact that it shows: the possibility to calculate the influence of organizational documents on the behavior of participants and, consequently, on the result of the social system, as well as the mechanism for converting messages, which are invariants of socio-economic space into information that affects the behavior of participants of relations.


Author(s):  
C. Bisconti ◽  
A. Corallo ◽  
M. De Maggio ◽  
F. Grippa ◽  
S. Totaro

This research aims to apply models extracted from the many-body quantum mechanics to describe social dynamics. It is intended to draw macroscopic characteristics of organizational communities starting from the analysis of microscopic interactions with respect to the node model. In this chapter, the authors intend to give an answer to the following question: which models of the quantum physics are suitable to represent the behaviour and the evolution of business processes? The innovative aspects of the project are related to the application of models and methods of the quantum mechanics to social systems. In order to validate the proposed mathematical model, the authors intend to define an open-source platform able to model nodes and interactions within a network, to visualize the macroscopic results through a digital representation of the social networks.


2003 ◽  
Vol 06 (03) ◽  
pp. 331-347 ◽  
Author(s):  
YUTAKA I. LEON SUEMATSU ◽  
KEIKI TAKADAMA ◽  
NORBERTO E. NAWA ◽  
KATSUNORI SHIMOHARA ◽  
OSAMU KATAI

Agent-based models (ABMs) have been attracting the attention of researchers in the social sciences, becoming a prominent paradigm in the study of complex social systems. Although a great number of models have been proposed for studying a variety of social phenomena, no general agent design methodology is available. Moreover, it is difficult to validate the accuracy of these models. For this reason, we believe that some guidelines for ABMs design must be devised; therefore, this paper is a first attempt to analyze the levels of ABMs, identify and classify several aspects that should be considered when designing ABMs. Through our analysis, the following implications have been found: (1) there are two levels in designing ABMs: the individual level, related to the design of the agents' internal structure, and the collective level, which concerns the design of the agent society or macro-dynamics of the model; and (2) the mechanisms of these levels strongly affect the outcomes of the models.


2016 ◽  
Vol 3 (4) ◽  
pp. 150703 ◽  
Author(s):  
Jonathan A. Ward ◽  
Andrew J. Evans ◽  
Nicolas S. Malleson

A widespread approach to investigating the dynamical behaviour of complex social systems is via agent-based models (ABMs). In this paper, we describe how such models can be dynamically calibrated using the ensemble Kalman filter (EnKF), a standard method of data assimilation. Our goal is twofold. First, we want to present the EnKF in a simple setting for the benefit of ABM practitioners who are unfamiliar with it. Second, we want to illustrate to data assimilation experts the value of using such methods in the context of ABMs of complex social systems and the new challenges these types of model present. We work towards these goals within the context of a simple question of practical value: how many people are there in Leeds (or any other major city) right now? We build a hierarchy of exemplar models that we use to demonstrate how to apply the EnKF and calibrate these using open data of footfall counts in Leeds.


2012 ◽  
Vol 27 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Scott E. Page

AbstractAgent-based models are often described as bottom-up because macro-level phenomena emerge from the micro-level interactions of agents. These macro-level phenomena include fixed points, cycles, dynamic patterns, and long transients. In this paper, I explore the link between micro-level characteristics—learning rules, diversity, network structure, and externalities—and the macro-level patterns they produce. I focus on why we need agent-level modeling, on how these models produce emergent phenomenon, and on how agent-based models help understand outcomes of social systems in a way that differs from the analytic, equilibrium approach.


2015 ◽  
Vol 26 (09) ◽  
pp. 1550098 ◽  
Author(s):  
Fermin Dalmagro ◽  
Juan Jimenez

We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.


Sign in / Sign up

Export Citation Format

Share Document