Security Threats in the Internet of Things

Author(s):  
Faiza Medjek ◽  
Djamel Tandjaoui ◽  
Imed Romdhani ◽  
Nabil Djedjig

In the internet of things (IoT) vision, people, systems, and objects with sensing and/or actuating capabilities communicate to monitor and control the physical world. Nowadays, the IoT concept has attracted significant attention from different application domain such as healthcare and smart homes. Indeed, self-organization and self-configuration are key characteristics of IoT given that IoT represents a pervasive environment where objects are resource-constrained and communication technologies are very ubiquitous. These characteristics in addition to the vulnerability of objects themselves and of the communication channels make IoT more susceptible to malicious attacks. In this context, a deep analysis of IoT security breach and vulnerabilities is necessary. This chapter presents IoT requirements and existing threats as well as security protocols and mechanisms. It specifically analyzes existing and new threats against the IoT's routing protocol (the routing protocol for low-power and lossy networks: RPL) and presents intrusion detection solutions (IDS) to counter RPL attacks.

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5997
Author(s):  
Zahrah A. Almusaylim ◽  
NZ Jhanjhi ◽  
Abdulaziz Alhumam

The rapid growth of the Internet of Things (IoT) and the massive propagation of wireless technologies has revealed recent opportunities for development in various domains of real life, such as smart cities and E-Health applications. A slight defense against different forms of attack is offered for the current secure and lightweight Routing Protocol for Low Power and Lossy Networks (RPL) of IoT resource-constrained devices. Data packets are highly likely to be exposed in transmission during data packet routing. The RPL rank and version number attacks, which are two forms of RPL attacks, can have critical consequences for RPL networks. The studies conducted on these attacks have several security defects and performance shortcomings. In this research, we propose a Secure RPL Routing Protocol (SRPL-RP) for rank and version number attacks. This mainly detects, mitigates, and isolates attacks in RPL networks. The detection is based on a comparison of the rank strategy. The mitigation uses threshold and attack status tables, and the isolation adds them to a blacklist table and alerts nodes to skip them. SRPL-RP supports diverse types of network topologies and is comprehensively analyzed with multiple studies, such as Standard RPL with Attacks, Sink-Based Intrusion Detection Systems (SBIDS), and RPL+Shield. The analysis results showed that the SRPL-RP achieved significant improvements with a Packet Delivery Ratio (PDR) of 98.48%, a control message value of 991 packets/s, and an average energy consumption of 1231.75 joules. SRPL-RP provided a better accuracy rate of 98.30% under the attacks.


2020 ◽  
Vol 14 (2) ◽  
pp. 264-270
Author(s):  
Andrea Liliana Fagua Fagua ◽  
José Custodio Najar Pacheco

In recent years, the Internet has evolved till become the Internet of Things (IoT for its acronym). This is one of the most important and significant inventions of all humanity, generating a direct impact on the way of how people live, think and act. It is one of the most used terms by anyone who talks about intelligent connectivity. Internet of things changes everything, is the answer to connect to the network an incredible number of people and link everyday objects, which are equipped with sensors, actuators and communication technologies and they are used to exchange information from the physical world through the Internet, offering data in real time and monitored through the network. Thanks to IoT, more and more companies are integrating small sensors to real-world objects, which provide information about almost everything that can be measured, so the amount of information circulating through networks grows exponentially. Smart cities are a good example of the benefits that IoT brings, by improving the quality of life of people with the services that are offered in an efficient and sustainable way. The installation of IoT brings great challenges focused on information security in organizations, but also opportunities for development in all areas of daily life and excellent ideas for innovation.


2020 ◽  
Vol 63 (6) ◽  
pp. 958-973
Author(s):  
Muhammad Omer Farooq

Abstract The routing protocol for low-power and lossy networks (RPL) is a standard routing framework for Internet of Things (IoT). It supports multipoint-to-point (MP-to-P), point-to-point (P-to-P) and point-to-multipoint (P-to-MP) communications. It is known that RPL’s control overhead can result in the protocol’s poor performance in P-to-P and P-to-MP communications especially in its non-storing mode of operation. Here, we present a routing protocol for the Internet of Things (RIoT) that supports MP-to-P, P-to-P and P-to-MP communications. The protocol can construct P-to-P and P-to-MP routes with relatively lower control overhead. Another salient feature of RIoT is that it supports multiple gateways in the same network with an aim to reduce memory requirement for storing a forwarding table. Furthermore, RIoT is also capable of handling mobility-based IoT use cases. To facilitate communication among nodes connected to different gateways in the same network, here we also present an inter-gateway communication mechanism. We implemented RIoT in the Contiki operating system, and it is extensively evaluated using emulation and real testbed-based experiments. We analyzed the impact of the number of gateways, radio duty cycling (RDC) and mobility on the routing protocols’ performance. Our results demonstrate that either with or without RDC RIoT demonstrates statistically significantly better packet delivery ratio, per-packet end-to-end delay and control overhead compared to the RPL-based protocol. RIoT’s multi-gateway communication architecture substantially reduces the memory requirement to store a forwarding table. Our results also demonstrate that multiple gateways in a network reduce the network partitioning problem in mobile scenarios. Hence, RIoT also demonstrates better performance in mobile scenarios compared to the RPL-based protocol.


Author(s):  
Philokypros P. Ioulianou ◽  
Vassilios G. Vassilakis ◽  
Michael D. Logothetis

IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is a popular routing protocol used in wireless sensor networks and in the Internet of Things (IoT). RPL was standardized by the IETF in 2012 and has been designed for devices with limited resources and capabilities. Open-source RPL implementations are supported by popular IoT operating systems (OS), such as ContikiOS and TinyOS. In this work, we investigate the possibility of battery drain Denial-of-Service (DoS) attacks in the RPL implementation of ContikiOS. In particular, we use the popular Cooja simulator and implement two types of DoS attacks, particularly version number modification and “Hello” flooding. We demonstrate the impact of these attacks on the power consumption of IoT devices. Finally, we discuss potential defenses relying on distributed intrusion detection modules.


Author(s):  
R. Habibi ◽  
A. A. Alesheikh

Thanks to the recent advances of miniaturization and the falling costs for sensors and also communication technologies, Internet specially, the number of internet-connected things growth tremendously. Moreover, geosensors with capability of generating high spatial and temporal resolution data, measuring a vast diversity of environmental data and automated operations provide powerful abilities to environmental monitoring tasks. Geosensor nodes are intuitively heterogeneous in terms of the hardware capabilities and communication protocols to take part in the Internet of Things scenarios. Therefore, ensuring interoperability is an important step. With this respect, the focus of this paper is particularly on incorporation of geosensor networks into Internet of things through an architecture for monitoring real-time environmental data with use of OGC Sensor Web Enablement standards. This approach and its applicability is discussed in the context of an air pollution monitoring scenario.


Author(s):  
Mikael Wiberg

Computing is increasingly intertwined with our physical world. From smart watches to connected cars, to the Internet of Things and 3D-printing, the trend towards combining digital and analogue materials in design is no longer an exception, but a hallmark for where interaction design is going in general. Computational processing increasingly involves physical materials, computing is increasingly manifested and expressed in physical form, and interaction with these new forms of computing is increasingly mediated via physical materials. Interaction Design is therefore increasingly a material concern. – Welcome to a book on the materiality of interaction, welcome to a book on material-centered interaction design! In this introduction to this book, “The Materiality of Interaction – Notes on the Materials of Interaction Design”, I describe the contemporary trend in interaction design towards material interactions, I describe how interaction design is increasingly about materials, and I propose “Material-centered interaction design” as a method for working with materials in interaction design projects.


2018 ◽  
Vol 11 (4) ◽  
pp. 32-52 ◽  
Author(s):  
Kouah Sofia ◽  
Kitouni Ilham

Nowadays, the Internet of things (IoT) is becoming a promising technology which revolutionizes and simplifies our daily life style. It allows interaction and cooperation between a large variety of pervasive objects over wireless and wired connections, in order to achieve specific goals. Moreover, it provides a concise integration of physical world into computer systems through network infrastructure. This paper provides an agent-based architecture for developing IoT systems. The proposed architecture is multi-layer and generic. It encompasses four layers: Physical Component Management, Local Management -Coordination, Global Management-Coordination and Specialized Operative Management Layers. The first one can be seen as a smart layer that ensures connection and communication between things and the system. The second one constitutes the intelligent core of the system which acts locally to ensure coordination and further internal functioning. The third layer ensures coordination between the local system and the externals ones. The last layer supports additional behaviors which are domain dependent. The architecture is illustrated by an IoT system diagnosis.


Sign in / Sign up

Export Citation Format

Share Document