Multi-Layer Agent Based Architecture for Internet of Things Systems

2018 ◽  
Vol 11 (4) ◽  
pp. 32-52 ◽  
Author(s):  
Kouah Sofia ◽  
Kitouni Ilham

Nowadays, the Internet of things (IoT) is becoming a promising technology which revolutionizes and simplifies our daily life style. It allows interaction and cooperation between a large variety of pervasive objects over wireless and wired connections, in order to achieve specific goals. Moreover, it provides a concise integration of physical world into computer systems through network infrastructure. This paper provides an agent-based architecture for developing IoT systems. The proposed architecture is multi-layer and generic. It encompasses four layers: Physical Component Management, Local Management -Coordination, Global Management-Coordination and Specialized Operative Management Layers. The first one can be seen as a smart layer that ensures connection and communication between things and the system. The second one constitutes the intelligent core of the system which acts locally to ensure coordination and further internal functioning. The third layer ensures coordination between the local system and the externals ones. The last layer supports additional behaviors which are domain dependent. The architecture is illustrated by an IoT system diagnosis.

2020 ◽  
Vol 24 (5) ◽  
pp. 82-90
Author(s):  
A. Mikryukov ◽  
V. M. Trembach ◽  
A. V. Danilov

Purpose of research. The aim of the research is to form modules of organizational and technical systems (OTS) using a cognitive approach to solve problems of adaptation of cyberphysical systems. Currently, there is a rapid development of elements of the Internet of things. New tasks related to self-organization and adaptation in a rapidly changing external environment are brought to the fore. These tasks occur when new elements appear in the telecommunications computer network, they fail, change the mode, new tasks occur, etc. To work out these tasks, the possibilities of approaches to support and decision-making such as situational, cognitive, and semiotic are considered. The authors consider the cognitive approach in more detail. Within the framework of the cognitive paradigm, the article describes the use of the cognitive approach for solving problems of adaptation of cyberphysical systems. To solve this problem on the basis of an agent-based approach, the structure of a cyberphysical system with the possibility of adaptation is presented and the functions of its agents are described. The main stages of solving problems of adaptation of cyberphysical systems are presented. An adaptation algorithm using the planning mechanism is presented. The demo example shows a knowledge base for solving the problem of adapting cyberphysical systems using a cognitive planning mechanism.Materials and methods of research. New approaches and methods are required to address adaptation issues in planning. The cognitive approach is one of the developing directions in solving many problems of the Internet of things. One of these tasks is the ability to adapt OTS modules in a rapidly changing external environment based on the planning mechanism. To solve the planning problem, we use the algorithm described by Aristotle more than 2,350 years ago and implemented in the GPS program. This algorithm can be considered the first description of the cognitive mechanism that a person uses. The knowledge base uses an integrated approach to knowledge representation. When developing OTS modules, an agent-based approach was used to solve the problem of adaptation.Results. The existing and developing approaches and methods for decision support and decision-making are considered for decisionmaking in newly emerging situations in OTS modules. The main provisions of such significant approaches as situational, cognitive and semiotic are presented. A cognitive approach to the adaptation of intelligent systems is proposed. The solution of the problem of adaptation of cyberphysical systems is considered within the framework of the cognitive paradigm. The structure of a cyberphysical system capable of solving adaptation problems is shown. The functions of OTS modules based on agent-oriented technology are described. A description of the adaptation algorithm using the cognitive planning mechanism is given. The main stages of solving problems of adaptation of cyberphysical systems are presented. A demo example of solving the problem of adaptation by a cyberphysical system-a cooking robot – is shown.Conclusion. Using the modular architecture of an intelligent system allows you to solve many problems. One of these tasks is to configure elements of the Internet of things when they deviate from their main function. The planning mechanisms proposed for parametric adaptation can be repeatedly applied in OTS modules as separate agents. This approach is relevant for elements of the Internet of things. In the case of expanding the functionality of the OTS modules of Internet of things, it is advisable to apply machine learning with fixing the results in the knowledge base of planning agents.


Author(s):  
Mikael Wiberg

Computing is increasingly intertwined with our physical world. From smart watches to connected cars, to the Internet of Things and 3D-printing, the trend towards combining digital and analogue materials in design is no longer an exception, but a hallmark for where interaction design is going in general. Computational processing increasingly involves physical materials, computing is increasingly manifested and expressed in physical form, and interaction with these new forms of computing is increasingly mediated via physical materials. Interaction Design is therefore increasingly a material concern. – Welcome to a book on the materiality of interaction, welcome to a book on material-centered interaction design! In this introduction to this book, “The Materiality of Interaction – Notes on the Materials of Interaction Design”, I describe the contemporary trend in interaction design towards material interactions, I describe how interaction design is increasingly about materials, and I propose “Material-centered interaction design” as a method for working with materials in interaction design projects.


2011 ◽  
Vol 12 (7) ◽  
pp. 669-674 ◽  
Author(s):  
Nathalie Mitton ◽  
David Simplot-Ryl

2014 ◽  
Vol 644-650 ◽  
pp. 2812-2815 ◽  
Author(s):  
Cui Mei Li ◽  
Rou Wang ◽  
Le Huang

The Internet of Things, which is another revolution in the information industry following the computer and the Internet, is referred to as the third wave of the world information industry. In this paper, the concepts, the architecture system and the principle, and the key technology in the Internet of Things and its application in real life are presented. Finally, a strategic advice on the development of the Internet of Things in China is put forward.


Author(s):  
Yusuf Perwej ◽  
Firoj Parwej ◽  
Mumdouh Mirghani Mohamed Hassan ◽  
Nikhat Akhtar

Recent years have seen the swift development and deployment of Internet-of-Things (IoT) applications in a variety of application domains. In this scenario, people worldwide are now ready to delight the benefits of the Internet of Things (IoT). The IoT is emerging as the third wave in the evolution of the Internet. The 1990s’ Internet wave connected 1.2 billion subscribers while the 2000s’ mobile wave connected another 2.4 billion. Actually, IoT is expected to consist of more than 84 billion connected devices generating 186 zettabyte of data by 2025, in the opinion of IDC. It includes major types of networks, such as distributed, ubiquitous, grid, and vehicular, these have conquered the world of information technology over a decade. IoT is growing fast across several industry verticals along with increases in the number of interconnected devices and diversify of IoT applications. In spite of the fact that, IoT technologies are not reaching maturity yet and there are many challenges to overcome. The Internet of Things combines actual and virtual anywhere and anytime, fascinate the attention of both constructor and hacker. Necessarily, leaving the devices without human interference for a long period could lead to theft and IoT incorporates many such things. In this paper, we are briefly discussing technological perspective of Internet of Things security. Because, the protection was a major concern when just two devices were coupled. In this context, security is the most significant of them. Today scenario, there are millions of connected devices and billions of sensors and their numbers are growing. All of them are expected secure and reliable connectivity. Consequently, companies and organizations adopting IoT technologies require well-designed security IoT architectures.


2019 ◽  
Vol 1 (2) ◽  
pp. 16 ◽  
Author(s):  
Deepak Choudhary

The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity  of  IoT  applications and devices and their large-scale deployment.


Author(s):  
Sergio V Davalos, Ph.D.

This paper introduces a framework for embedding intelligence in the Internet of Things (IoT) networks. The framework draws upon agent-based modeling, swarm intelligence, social insect behavior, and evolutionary adaptation. The key principles for each of these areas are first discussed. These concepts are then discussed from an IoTs perspective. The resulting capabilities and potential of embedding this type of intelligence are outlined.


Sign in / Sign up

Export Citation Format

Share Document